Рассчитать средний срок службы аппаратуры. Понятие ресурса (технический ресурс). Средний срок хранения

Добрый вечер!
Заранее прошу прощения за возможно уже задававшийся вопрос, однако, поиск по сайту выдал более 2-х тысяч результатов и после просмотра 10-й страницы - стало ясно, что лучше попробовать спросить в отдельной теме.

Также заранее благодарю каждого, кто найдёт время откликнуться и дать ценный совет по ситуации!

Итак, ситуация следующая.

Предприятие заключило договор на поставку природного газа.

Использует его в производственных целях.

На предприятие пришла проверка газовой службы.

В результате её проведения было выявлено, что у некоторых узлов учёта газа (УУГ) истекли сроки службы: у термопреобразователя, а также у комплекса для измерения количества газа (и входящего в него газового счётчика).

В связи с тем, что в договоре есть пункт о том, что

"... под неисправностью узла учёта газа понимается такое состояние, при котором любое входящее в него средство измерения не соответствует хотя бы одному из требований действующей нормативно-технической документации. Кроме того, узел учёта газа считается неисправным после истечения срока эксплуатации (службы) любого средства измерения, указанного в технической документации на данное СИ.
Если иное не подтверждено, то период времени неисправности или отсутствия узла учёта газа, в течение которого Покупатель потреблял газ, определяется исходя из круглосуточного потребления, начиная с даты последней проверки узла учёта газа Поставщиком, а если таковая не проводилась, то с даты установки Поставщиком пломбы на средства измерения узла учёта газа, до даты возобновления надлежащего учета",

Однако, есть несколько "но":

1. Истечение срока службы, на мой взгляд, не может быть равнозначно понятию истечению срока возможной работы УУГ.

Во-первых, в паспортах всех УУГ указано, что средний срок службы составляет не менее 6-ти лет.

То есть фразы о предельном сроке (среднем сроке) службы - тех. документация не содержит. Получается, что средство измерения можно поверять неограниченное (теоретически) количество раз после истечения срока службы.

Во-вторых - все УУГ были своевременно поверены, а согласно выданным свидетельствам об этом - УУГ можно эксплуатировать до следующего срока поверки как минимум полгода.

2. Согласно "ГОСТ 27.002-2015. Межгосударственный стандарт. Надежность в технике. Термины и определения":

"3.6.4.3 средний срок службы: Математическое ожидание срока службы

3.3.6 срок службы: Календарная продолжительность эксплуатации от начала эксплуатации объекта или ее возобновления после капитального ремонта до момента достижения предельного состояния

3.2.7 предельное состояние: Состояние объекта, в котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно

3.2.2 неисправное состояние (неисправность): Состояние объекта, в котором он не соответствует хотя бы одному из требований, установленных в документации на него
Примечание - Несоответствие хотя бы одному из предъявляемых требований может быть определено как состояние, в котором значение хотя бы одного параметра объекта не соответствуют требованиям документации на этот объект".

Таким образом, ГОСТ тоже подтверждает то, что фактически - ничто не мешает провести поверку оборудования, у которого пусть даже и истёк средний срок службы - и использовать его дальше до момента следующей поверки (либо уже в невозможности проведения таковой).

Истечение срока службы УУГ, срок поверки которого к тому же не истёк, не может являться основанием для признания таких приборов неисправными.

Просьба профессионалов и специалистов этого форума дать свой комментарий относительно данной ситуации!

А также, по возможности, помочь с дополнительным нормативным обоснованием позиции о неравнозначности срока службы средств измерения его неисправности.

Для повышения долговечности ремонтируемых машин, отдельных узлов, соединений, а также деталей путем их восстановления, выбора рационального способа восстановления и материала покрытия, определения расхода запасных частей весьма важно знать и уметь оценивать величины предельных! износов и других показателей долговечности.

Согласно ГОСТ 27.002-83, долговечность - свойство объекта (детали, узла, машины) сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта. В свою очередь, работоспособное состояние - состояние объекта, при котором значение всех параметров, характеризующих способность выполнять заданные функции, соответствует требованиям нормативно-технической и (или) конструкторской документации; предельное состояние - состояние объекта, при котором его дальнейшее применение по назначению недопустимо или нецелесообразно, либо восстановление его исправного или работоспособного состояния невозможно или нецелесообразно. При этом следует иметь в виду, что для неремонтируемых объектов предельного состояния может достигнуть не только неработоспособный объект, но и работоспособный, применение которого оказывается недопустимым согласно требованиям безопасности, безвредности, экономичности, эффективности. Переход такого неремонтируемого объекта в предельное состояние происходит раньше возникновения отказа.

С другой стороны, объект может оказаться в неработоспособном состоянии, не достигнув предельного состояния. Работоспособность такого объекта, а также объекта, находящегося в предельном состоянии, восстанавливается с помощью ремонта, при котором происходит восстановление ресурса объекта в целом.

Основными техническими оценочными показателями долговечности являются ресурс и срок службы. При характеристике показателей следует указывать вид действия после наступления предельного состояния объекта (например, средний ресурс до капитального ремонта; гамма-процентный ресурс до среднего ремонта и т. д.). В случае окончательного снятия с эксплуатации объекта, обусловленного предельным состоянием, показатели долговечности называются: полный средний ресурс (срок службы), полный гамма-процентный ресурс (срок службы), полный назначенный ресурс (срок службы). Полный срок службы включает в себя продолжительности всех видов ремонта объекта. Рассмотрим основные показатели долговечности и их разновидности, конкретизирующие этапы или характер эксплуатации.

Технический ресурс - наработка объекта от начала его эксплуатации или ее возобновления после ремонта определенного вида до перехода в предельное состояние.

Срок службы - календарная продолжительность от начала эксплуатации объекта или ее возобновления после ремонта определенного вида до перехода в предельное состояние.

Наработка - продолжительность или объем работы объекта.

Наработка объекта может быть:

1) наработка до отказа - от начала эксплуатации объекта до возникновения первого отказа;

2) наработка между отказами - от окончания восстановления работоспособного состояния объекта после отказа до возникновения следующего отказа.

Технический ресурс представляет собой запас возможной наработки объекта. Различают следующие виды технического ресурса: доремонтный ресурс -наработка объекта до первого капитального ремонта; межремонтный ресурс - наработка объекта от предыдущего до последующего ремонта (число межремонтных ресурсов зависит от числа капитальных ремонтов); послеремонтный ресурс -наработка от последнего капитального ремонта объекта до его перехода в предельное состояние; полный ресурс - наработка от начала эксплуатации объекта до его перехода в предельное состояние, соответствующее окончательному прекращению эксплуатации. Виды сроков службы подразделяются так же, как и ресурсы.

Средний ресурс - математическое ожидание ресурса. Показатели «средний ресурс», «средний срок службы», «средняя наработка» определяют по формуле

где - средняя наработка до отказа (средний ресурс, средний срок службы); f(t)-плотность распределения наработки до отказа (ресурса, срока службы); F(t) - функция распределения наработки до отказа (ресурса, срок службы).

Гамма-процентный ресурс - наработка, в течение которой объект не достигает предельного состояния с заданной вероятностью γ, выраженной в процентах. Гамма-процентный ресурс , гамма-процентный срок службы определяют по следующему уравнению:

где t γ - гамма-процентная наработка до отказа (гамма-процентный ресурс, гамма-процентный срок службы).

При γ = 100% гамма-процентная наработка (ресурс, срок службы) называется установленной безотказной наработкой (установленным ресурсом, установленным сроком службы). При γ=50% гамма-процентная наработка (ресурс, срок службы) называется медианной наработкой (ресурсом, сроком службы).

Отказ - событие, заключающееся в нарушении работоспособного состояния объекта.

Назначенный ресурс - суммарная наработка объекта, при достижении которой применение по назначению должно быть прекращено.

Назначенный ресурс (срок службы) установлен с целью принудительного заблаговременного прекращения применения объекта по назначению, исходя из требований безопасности или: экономического анализа. При этом в зависимости от технического состояния, назначения, особенностей эксплуатации объект после достижения назначенного ресурса может эксплуатироваться дальше, сдан в капитальный ремонт, списан.

Предельный износ - это износ, соответствующий предельному состоянию изнашивающегося изделия. Основными признаками приближения предельного износа являются увеличение расхода топлива, снижение мощности, снижение прочности деталей, т. е. дальнейшая работа изделия становится технически ненадежной и экономически нецелесообразной. При достижении предельных износов деталей и соединений их полный ресурс (Т п) исчерпывается, и необходимо принимать меры для его восстановления.

Допустимый износ - износ, при котором изделие сохраняет работоспособность, т. е. при достижении этого износа детали или соединения могут работать без их восстановления еще целый межремонтный срок. Допустимый износ меньше предельного, и остаточный ресурс деталей не исчерпан.

Показатели долговечности характеризуют свойство технического изделия сохранять во времени работоспособность до наступления предельного состояния, когда оно теряет работоспособность при установленной системе технического обслуживания и ремонтов.

Перечень используемых показателей долговечности таков:

Т р – среднийресурс, т.e. средний технический ресурс до капитального ремонта;

Т рγ - гамма-процентный ресурс;

Т р.н - назначенный ресурс;

Т р.у - установленный ресурс;

Т сл - средний срок службы;

Т слγ -гамма-процентный срок службы;

Т сл.н - назначенный срок службы;

Т сл.у - установленный срок службы;

Т сп - срок службы до списания изделия или предельный срок службы.

Понятие «ресурс» характеризует долговечность, по наработке изделия, а «срок службы» - по календарному времени.

Исходные данные для расчета ресурса, порядок его расчета и статистической оценки, а также привила усыновления требуемого ресурса изделий регламентированы методическими указаниями МУ10-71 «Промышленные изделия. Определение ресурса». М.: Изд-во стандартов, 1972.

Так как под ресурсом понимается суммарная наработка до предельного состояния, то его показатели определяются по формулам, аналогичным формулам наработки на отказ.

Средний ресурс изделия - это математическое ожидание его ресурса. Статистическая оценка среднего ресурса такова:

где Т р - ресурс i -го объекта;

Ν - число изделий, поставленных на испытания или в эксплуатацию.

Гамма-процентный ресурс выражает наработку, в течение которой изделие с заданной вероятностью γ процентов не досигает предельного состояния. Гамма-процентный ресурс является основным расчетным показателем, например для подшипников и других изделий. Существенное достоинство этого показателя в возможности его определения до завершения испытаний всех образцов. В большинстве случаев для различных изделий используют критерий 90%-го ресурса.

Вероятность обеспечения ресурса Т рγ , соответствующую значению γ /100, определяют по формуле

, (5.21)

где Т р - наработка до предельного состояния (ресурса);

γ - число изделий (%), не достигающих с заданной вероятностью предельного состояния.

Значение гамма-процентного ресурса определяют с помощью кривых распределения ресурсов (рис. 23).

Назначенный ресурс - суммарная наработка, при достижении которой применение изделия по назначению должно быть прекращено независимо от его технического состояния.

Рисунок 9 – Определение значения гамма-процентного ресурса:

а и б – кривые соответственно убыли и распределения ресурсов

Под установленным ресурсом , понимается технически обоснованная или заданная величина ресурса, обеспечиваемая конструкцией, технологией и условиями эксплуатации, в пределах которой изделие не должно достигать предельного состояния.

Средний срок службы - математическое ожидание срока службы. Статистическую оценку среднего срока службы определяют по формуле: , (5.22)

где Т сл - срок службы i -гo изделия.

Гамма-процентный срок службы представляет собой календарную продолжительность эксплуатации, в течение которой изделие не достигает предельного состояния с вероятностью γ, выраженной в процентах. Для его расчета используют соотношение

. (5.23)

Назначенный срок службы - суммарная календарная продолжительность эксплуатации, при достижении которой применение изделия по назначению должно быть прекращено независимо от его технического состояния.

Под установленным сроком службы понимают технико-экономически обоснованный срок службы, обеспечиваемый конст

Рисунок 10-Типичная кривая износа поверхности изделия

рукцией, технологией и эксплуатацией, в пределах которого изделие не должно достигать предельного состояния.

Предельный срок службы Т сп представляет собой календарную продолжительность эксплуатации или использования изделия до момента его списания и снятия с эксплуатации (использования). Он определяется аналогично тому, как определяют, например, средний срок службы.

Известно, что основной причиной снижения показателей долговечности изделия является износ его деталей.

Изнашиванием называется процесс постепенного поверхностного разрушения материала деталей машин в результате трения о них других деталей, твердых тел или частиц. Известно, что сопротивление материала изнашиванию зависит не только от свойств этого материала, но и от многих условий, в которых происходит трение. К этим условиям (факторам) относятся: свойства сопряженного тела, свойства промежуточной среды, температура на поверхности и т.д.

На рисунке 10 приведена типичная кривая зависимости характеристик износа от длительности испытаний или эксплуатации изделий

Износ характеризуется тремя периодами:

1. Период начального износа или период приработки, когда происходит переход от исходного состояния поверхности тре­ния к состоянию относительно устойчивому. В течение периода приработки темп износа со временем уменьшается, приближа­ясь к некоторой постоянной величине, характерной для перио­да установившегося износа.

2. Период установившегося износа, при неизменных условиях работы трущейся поверхности, характеризуется постоянным тем­пом износа.

3. Период ускоренного износа.

Результаты испытаний на износ и наблюдений за плюсом впроцессе эксплуатации техники обычно выражают в относительных величинах.

Относительная износостойкость:

размерная

где Δl э - линейный износ эталона,

Δl м - линейный износ материала испытуемого изделия (образца или детали);

весовая

Е = ΔG э / ΔG м,

где ΔG э - весовой износ эталона,

ΔG м - весовой износ материала испытуемого изделия (образца или детали).

Износ может быть оценен не только относительной характеристикой линейного износа, но и по относительному изменению объемов эталона и объекта испытания.

На практике часто износостойкость (износность) оценивают в абсолютных величинах таких как мм/км, мм 2 /час и т.п.

Установлены три группы факторов, влияющих на вид и интенсивность износа поверхности деталей машин: 1 - факторы, обусловливающие внешне механические воздействия на поверхность трения; 2 - характеристики внешней среды; 3 - факторы, связанные со свойствами трущихся тел.

Конкретными факторами мерной группы являются: а) род трения (качение, скольжение); б) скорость относительного перемещения трущихся поверхностей; в) величина и характер давления при трении.

Основные факторы второй группы, связанные с внешней средой, таковы: а) смазка; б) газовая среда (воздушная, агрессивная или защитная атмосферы); в) наличие абразивных (твердых) частиц на поверхности трения.

Рисунок.3 - Сервер DEPO Storm 1300Q1

Процессоры:

Устанавливается один процессор Intel® Core™ i7/Intel® Xeon® 5500/5600 серии с шиной QPI до 6.4GT/s.

Intel® X58 Express ICH10R.

Устанавливается до 24Гб трехканальной оперативной памяти по спецификации DDR3-1333/1066/800. Возможна поддержка ECC. Имеется 6 слотов для оперативной памяти.

Жесткие диски:

Возможна установка до 4 дисков с интерфейсом SAS/SATA с поддержкой функции "горячей" замены и возможностью организации RAID массивов уровней RAID 0, 1, 10, 5, 5EE, 50, 6, 60.

Стандартное оборудование:

Один высокоскоростной последовательный порт 16550 (FIFO). Второй опционально;

Разъемы PS/2 для подключения мыши и клавиатуры;

Разъемы 2xUSB на задней панели и 2хUSB на передней панели опционально;

Интегрированный видеоадаптер Matrox G200eW 8 MB DDR2.

Сетевой интерфейс:

Двухпортовый интегрированный Gigabit Ethernet (10/100/1000Мбит) Intel 82574L.

Особенности:

Поддержка технологий Plug and Play, DMI 2.3, ACPI 2.0, PCI 2.2, Wake-On-LAN, Wake-On-Ring, SMBIOS 2.3;

Датчик вскрытия корпуса;

Поддержка технологии диагностики жестких дисков S.M.A.R.T;

Непрерывный контроль напряжений по каналам с выдачей сообщения об отклонении +1.8V, +3.3V, +5V, ±12V, +3.3V Standby, +5V Standby, VBAT, HT, Memory, Chipset Voltages;

Контроль скорости вращения и управление вентиляторами;

Система Watch Dog, предотвращающая зависания системы. Все разъемы отмаркированы в соответствии со спецификацией PC’99;

В комплект поставки включены драйверы, программное обеспечение мониторинга системы и управления сервером, а также документация на русском языке.

Система охлаждения:

3 вентилятора для обеспечения нормального терморежима внутри сервера;

1 вентилятор на блоке питания.

Сервер комплектуется блоками питания с автоматическим выбором частоты (50/60Гц);

Блок питания 520Вт или 2x400Вт.

Исполнение:

Для установки в 19" стойку, высота 1U. Комплектуется набором для монтажа в стойку. Рельсы имеют длину 690мм. Расстояние между стойками для крепления регулируется и составляет 710-830мм;

Размеры (ДВШ, мм) 504*43*437;

Масса до 15кг;

Расширение:

Слот 1 (x8) PCI-E или опционально 1 (x16) PCI-E.



Гарантийное обслуживание: срок гарантии от 1 до 3 лет с возможностью обслуживания на месте эксплуатации.


Рисунок. 4 - Коммутатор D-Link DES-1210-52

Металлический корпус, 19’’
Интерфейсы:
- 48 портов 10/100Base-TX;
- 2 порта 10/100/1000Base-T;
- 2 комбо-порта 10/100/1000Base-T /SFP;
Порты:
- IEEE 802.3 10BASE-T Ethernet (медный кабель на основе витой пары);
- IEEE 802.3u 100BASE-TX Fast Ethernet (медный кабель на основе витой пары);
- IEEE 802.3ab 1000BASE-T Gigabit Ethernet (медный кабель на основе витой пары);
- IEEE 802.3z Gigabit Ethernet (оптоволоконный кабель);
- автосогласование ANSI/IEEE 802.3;
- управление потоком IEEE 802.3x;
Производительность:
- пропускная способность коммутатора: 17.6 Гб;
- максимальная скорость продвижения пакетов размером 64 байта: 13.1 Mpps;
- таблица MAC-адресов: 8K записей на устройство;
- буфер RAM: 1 Мб;
- SDRAM для CPU: 64 Мб;
- Flash-память: 16 Мб
- метод коммутации: Store-and-forward.
Индикаторы диагностики :
- Power (на устройство);
- Link/Activity/Speed (на порт).

Программное обеспечение:
- функции уровня 2
- таблица МАС-адресов: 8K
- управление потоком+ Управление потоком 802.3x+ Предотвращение блокировки HOL;
- IGMP Snooping+ IGMP v1/v2 Snooping+ Поддержка до 256 IGMP-групп+ Поддержка до 64 статических многоадресных групп+ IGMP Snooping по VLAN+ Поддержка IGMP Querier;
- фильтрация многоадресных рассылок+ Перенаправление всех незарегистрированных групп+ Фильтрация всех незарегистрированных групп;
- Spanning Tree Protocol+ 802.1D STP+ 802.1w RSTP;
- функция Loopback Detection;
- Link aggregation 802.3ad+ Макс. кол-во групп на устройство – 8, 8 портов на группу;
- Port Mirroring+ One-to-One+ Many-to-One+ На основе потока;
- функция диагностики кабеля;
- настраиваемый интерфейс MDI/MDIX.
VLAN:
- 802.1Q tagged VLAN;
- группы VLAN+ Макс. 256 статических VLAN+ Макс. 4094 VIDs;
- управление VLAN;
- Asymmetric VLAN;
- Auto Voice VLAN+ Макс. 10 пользователей, определенных OUI+ Макс. 8 по умолчанию определенных OUI;
- Auto Surveillance VLAN.
Качество обслуживания (QoS) :
- 802.1p;
- 4 очереди;
- Обработка очередей+ Strict+ Weighted Round Robin (WRR);
- CoS на основе+ Очереди приоритетов 802.1p+ DSCP;
- управление полосой пропускания+ На основе порта (входящее/ исходящее, с шагом до 64 Кбит/с для 10/100 Мбит/с и с шагом 1850 Кбит/с для 1000 Мбит/с).
Списки управления доступом (ACL):
- макс. 50 входящих профилей;
- до 240 входящих правил доступа;
- ACL на основе+ MAC-адреса+ IPv4-адреса+ ICMP/IGMP/TCP/UDP.

Безопасность:
- 802.1X+ Управление доступом на основе порта;
- Port Security+ Поддержка до 64 MAC-адресов на порт;
- контроль широковещательного/ многоадресного/ одноадресного шторма;
- статический MAC-адрес;
- D-Link Safeguard Engine;
- DHCP Server Screening;
- Предотвращение атак ARP Spoofing+ Макс. 64 записи;
- SSL;
- поддержка v1/v2/v3.
Управление:
- Web-интерфейс GUI;
- Compact CLI через Telnet;
- Telnet-сервер;
- Утилита SmartConsole;
- TFTP-клиент;
- SNMP+ Поддержка v1/v2/v3;
- SNMP Trap;
- Trap для утилиты SmartConsole;
- Системный журнал;
- Макс. 500 записей в журнале;
- Поддержка IPv4 log serve;
- BootP/DHCP-клиент;
- Настройка времени+ SNTP;
- LLDP1;
- LLDP-MED 2 ;
- PoE на основе времени;
MIB:
- 1213 MIB II;
- 1493 Bridge MIB;
- 1907 SNMP v2 MIB;
- 1215 Trap Convention MIB;
- 2233 Interface Group MIB;
- D-Link Private MIB;
- Power Ethernet-MIB;
- LLDP-MIB;
Соответствие стандарту RFC:
- RFC 768 UDP;
- RFC 783 TFTP-клиент;
- RFC 791 IP;
- RFC 792 ICMP;
- RFC 793 TCP;
- RFC 826 ARP;
- RFC 854, 855, 856, 858 Telnet-сервер;
- RFC 896 Congestion Control in TCP/IP Network;
- RFC 903 Reverse Address Resolution Protocol;
- RFC 951 BootP-клиент;
- RFC 1155 MIB;
- RFC 1157 SNMP v1;
- RFC 1191 Path MTU Discovery;
- RFC 1212 Concise MIB Definition;
- RFC 1213 MIB II, IF MIB;
- RFC 1215 Traps for use with the SNMP;
- RFC 1239 Standard MIB;
- RFC 1350 TFTP;
- RFC 1493 Bridge MIB;
- RFC 1519 CIDR;
- RFC 1942 BootP/DHCP клиент;
- RFC 1901, 1907, 1908 SNMP;
- RFC 1945 HTTP/1.0;
- RFC 2131, 1232 DHCP;
- RFC 2138 Аутентификация RADIUS;
- RFC 2233 Interface MIB;
- RFC 2570, 2575 SNMP;
- RFC 2578 Structure of Management Information Version 2 (SMIv2) ;
- RFC 3416, 3417 SNMP;
- RFC 3621 Power Ethernet (только модель PoE) ;

Физические параметры: MTBF (часов)- 289.012 ч.

Акустика :0 дБ. Тепловыделение : 98.61 BTU/час.

Питание на входе : нутрвенний универсальный источник питания, от 100 до 240 В переменного тока, 50/60 Гц.

Максимальная потребляемая мощность: 28.9 Вт.

Размеры (Ш х Д х В): 440 х 250 х 44 мм.



 
Статьи по теме:
Понятие ресурса (технический ресурс)
Добрый вечер! Заранее прошу прощения за возможно уже задававшийся вопрос, однако, поиск по сайту выдал более 2-х тысяч результатов и после просмотра 10-й страницы - стало ясно, что лучше попробовать спросить в отдельной теме. Также заранее благодарю каж
Амортизация скважин – включает только амортизационные от-числения на полное восстановление скважин
Начиная с 01.04.2011 г. амортизация расходов, связанных с добычей полезных ископаемых, осуществляется в соответствии со ст. 148 Налогового кодекса, которая содержит нормы, аналогичные нормам Закона о прибыли, относительно включения любых расходов на разве
ТОП10 интересных фактов о Венере Что такое венеры
Вторая от Солнца – планета Венера, является наиболее приближенной к Земле и, пожалуй, самой красивой из планет земной группы. Она тысячелетиями приковывала к себе любопытные взгляды от ученых древности и современности, до простых смертных поэтов. Недаром
На нас летит астероид крупнее челябинского метеорита
Наша любимая голубая планета постоянно подвергается ударам от космического мусора, но благодаря тому, что большинство космических объектов сгорает либо разваливается в атмосфере, это чаще всего не представляет никаких серьёзных проблем. Даже если какой-ни