Волоконный лазер, его преимущества. Оптоволоконные лазеры Непрерывные тулиевые лазеры

Перевод Сергея Рогалева

Под термином «оптоволоконный лазер» обычно понимается лазер с оптическим волокном в качестве усиливающей среды, хотя некоторые лазеры с полупроводниковой усиливающей средой и волоконным резонатором также назвают оптоволоконными лазерами. В большинстве случаев усиливающей средой оптоволоконных лазеров является волокно, допированное редкоземными ионами, такими как эрбий (Er 3+), неодим (Nd 3+), иттербий (Yb 3+), тулий (Tm 3+) или празеодимий (Pr 3+). Для накачки используются один или несколько лазерных диодов.

Резонатор оптоволоконного лазера

Для создания линейного резонатора оптоволоконного лазера, необходимо использовать некоторый отражатель (зеркало), или же создать кольцевой резонатор (кольцевой оптоволоконный лазер).

В линейных резонаторах оптоволоконного лазера используются различные типы зеркал:

· В простых лабораторных установках обычные диэлектрические зеркала могут прикрепляться к перпендикулярно сколотым концам волокна, как показано в рисунке 1. Этот подход, однако, не очень практичен для массового производства и также не очень надежен.

· Френелевское отражение от торца волокна часто достаточно для использования в качестве выходного зеркала резонатора волоконного лазера. На Рис. 2 приведен пример.

· Также возможно внести диэлектрические покрытия непосредственно на концах волокна, обычно методом напыления. Такие покрытия могут использоваться для отражения в широком диапазоне.

· Во многих волоконных лазерах используются волоконные брэгговские решетки, сформированные непосредственно в легированном волокне, или в нелегированном волокне, спаянным с активным слоем. Рисунок 3 показывает лазер распределенным брэгговским отражателем (РБО лазер) с двумя волоконными решетками, но есть также лазеры с распределенной обратной связью с одной решеткой в легированных волокнах со сдвигом фазы в середине.

· Лучшие характеристики по мощности можно получить за счет использования коллиматора на выходе света из волокна и отражения его обратно с помощью диэлектрического зеркала (рис. 4). Интенсивность на зеркале значительно снижается из-за гораздо большей площади пучка. Однако, небольшое смещение может привести к существенным потерям при отражении, поляризационно-зависимые потери и т.д.

· Другой вариант заключается в использовании зеркала в форме петли волокна (рис. 5), на основе волоконной муфты (например, с коэффициентом разделения 50:50) и куска пассивного волокна.

Большинство волоконных лазеров накачиваются одним или несколькими диодными лазерами с волоконными выходами (излучение лазерного диода вводится в волокно). Накачка света может осуществляться непосредственно в сердцевину, или во внутреннюю оболочку волокна в мощных лазерах.

Волоконные лазеры компактны и прочны, точно наводятся и легко рассеивают тепловую энергию. Они бывают разных видов и, имея много общего с оптическими квантовыми генераторами других типов, обладают собственными уникальными преимуществами.

Волоконные лазеры: принцип работы

Устройства этого типа представляют собой вариацию стандартного твердотельного источника когерентного излучения с рабочим телом из оптоволокна, а не стержня, пластины или диска. Свет генерируется легирующей примесью в центральной части волокна. Основная структура может варьироваться от простой до довольно сложной. Устройство иттербиевого волоконного лазера таково, что волокно имеет большое отношение поверхности к объему, поэтому тепло может быть относительно легко рассеяно.

Волоконные лазеры накачиваются оптически, чаще всего с помощью диодных квантовых генераторов, но в некоторых случаях - такими же источниками. Оптика, используемая в этих системах, как правило, представляет собой волоконные компоненты, причем большинство или все они соединены друг с другом. В некоторых случаях используется объемная оптика, а иногда внутренняя оптоволоконная система сочетается с внешней объемной оптикой.

Источником диодной накачки может служить диод, матрица, или множество отдельных диодов, каждый из которых связан с соединителем волоконно-оптическим световодом. Легированное волокно на каждом конце имеет зеркало объемного резонатора - на практике в волокне делают решетки Брэгга. На концах объемной оптики нет, если только выходной луч не переходит в нечто иное, чем волокно. Световод может скручиваться, так что при желании лазерный резонатор может иметь длину в несколько метров.

Двухъядерная структура

Структура волокна, используемого в волоконных лазерах, имеет важное значение. Наиболее распространенной геометрией является двухъядерная структура. Нелегированное внешнее ядро ​​(иногда называемое внутренней оболочкой) собирает накачиваемый свет и направляет его вдоль волокна. Вынужденное излучение, генерируемое в волокне, проходит через внутреннее ядро, которое часто является одномодовым. Внутреннее ядро ​​содержит присадку иттербия, стимулируемую световым пучком накачки. Существует множество некруговых форм внешнего ядра, в числе которых - гексагональная, D-образная и прямоугольная, уменьшающих вероятность непопадания светового пучка в центральное ядро.

Волоконный лазер может иметь торцевую или боковую накачку. В первом случае свет от одного или нескольких источников поступает в торец волокна. При боковой накачке свет подается в разветвитель, который подает его во внешнее ядро. Это отличается от стержневого лазера, где свет поступает перпендикулярно к оси.

Для такого решения требуется много конструктивных разработок. Значительное внимание уделяется подведению света накачки в активную зону, чтобы произвести инверсию заселенности, ведущую к вынужденному излучению во внутреннем ядре. Сердцевина лазера может иметь различную степень усиления в зависимости от легирования волокна, а также от его длины. Эти факторы настраиваются инженером-конструктором для получения необходимых параметров.

Могут возникнуть ограничения мощности, в частности, при работе в пределах одномодового волокна. Такой сердечник имеет очень малую площадь поперечного сечения, и в результате через него проходит свет очень высокой интенсивности. При этом становится все более ощутимым нелинейное рассеяние Бриллюэна, которое ограничивает выходную мощность несколькими тысячами ватт. Если выходной сигнал является достаточно высоким, торец волокна может быть поврежден.

Особенности волоконных лазеров

Использование волокна в качестве рабочей среды дает большую длину взаимодействия, которая хорошо работает при диодной накачке. Эта геометрия приводит к высокой эффективности преобразования фотонов, а также надежной и компактной конструкции, в которой отсутствует дискретная оптика, требующая настройки или выравнивания.

Волоконный лазер, устройство которого позволяет ему хорошо адаптироваться, может быть приспособлен как для сварки толстых листов металла, так и для получения фемтосекундных импульсов. Световолоконные усилители обеспечивают однопроходное усиление и используются в сфере телекоммуникаций, поскольку способны усиливать многие длины волн одновременно. Такое же усиление применяется в усилителях мощности с задающим генератором. В некоторых случаях усилитель может работать с лазером непрерывного излучения.

Другим примером являются источники спонтанного излучения с волоконным усилением, в которых вынужденное излучение подавляется. Еще одним примером может служить рамановский волоконный лазер с усилением комбинированного рассеивания, существенно сдвигающим длину волны. Он нашел применение в научных исследованиях, где для комбинационной генерации и усиления используется фторидное стекловолокно, а не стандартные кварцевые волокна.

Тем не менее, как правило, волокна изготавливают из с редкоземельной легирующей примесью в ядре. Основными добавками являются иттербий и эрбий. Иттербий имеет длины волн от 1030 до 1080 нм и может излучать в более широком диапазоне. Использование 940-нм диодной накачки значительно сокращает дефицит фотонов. Иттербий не обладает ни одним из эффектов самогашения, которые есть у неодима при высоких плотностях, поэтому последний используется в объемных лазерах, а иттербий - в волоконных (они оба обеспечивают примерно одинаковую длину волны).

Эрбий излучает в диапазоне 1530-1620 нм, безопасном для глаз. Частоту можно удвоить для генерации света при 780 нм, что недоступно для волоконных лазеров других типов. Наконец, иттербий можно добавить к эрбию таким образом, что элемент будет поглощать излучение накачки и передавать эту энергию эрбию. Тулий - еще одна легирующая присадка со свечением в ближней инфракрасной области, которая, таким образом, является безопасным для глаз материалом.

Высокая эффективность

Волоконный лазер представляет собой квази-трехуровневую систему. Фотон накачки возбуждает переход от основного состояния на верхний уровень. Лазерный переход является переходом с самой нижней части верхнего уровня в одно из расщепленных основных состояний. Это очень эффективно: например, иттербий с 940-нм фотоном накачки излучает фотон с длиной волны 1030 нм и квантовым дефектом (потерей энергии) всего около 9 %.

В противоположность этому неодим, накачиваемый при 808 нм, теряет около 24 % энергии. Таким образом, иттербий по своей природе обладает более высокой эффективностью, хотя и не вся она достижима из-за потери некоторых фотонов. Yb может быть накачан в ряде полос частот, а эрбий - длиной волны 1480 или 980 нм. Более высокая частота не так эффективна, с точки зрения дефекта фотонов, но полезна даже в этом случае, потому что при 980 нм доступны лучшие источники.

В целом эффективность волоконного лазера является результатом двухступенчатого процесса. Во-первых, это КПД диода накачки. Полупроводниковые источники когерентного излучения очень эффективны, с 50 % КПД преобразования электрического сигнала в оптический. Результаты лабораторных исследований говорят о том, что можно достичь значения в 70 % и больше. При точном соответствии выходного излучения линии поглощения волоконного лазера и достигается высокий КПД накачки.

Во-вторых, это оптико-оптическая эффективность преобразования. При небольшом дефекте фотонов можно достичь высокой степени возбуждения и эффективности экстракции с оптико-оптической эффективностью преобразования в 60-70 %. Результирующий КПД находится в диапазоне 25-35 %.

Различные конфигурации

Оптоволоконные квантовые генераторы непрерывного излучения могут быть одно- или многомодовыми (для поперечных мод). Одномодовые производят высококачественный пучок для материалов, работающих или посылающих луч через атмосферу, а многомодовые промышленные волоконные лазеры могут генерировать большую мощность. Это используется для резки и сварки, и, в частности, для термообработки, где освещается большая площадь.

Длинноимпульсный волоконный лазер является, по существу, квазинепрерывным устройством, как правило, производящим импульсы миллисекундного типа. Обычно его рабочий цикл составляет 10 %. Это приводит к более высокой пиковой мощности, чем в непрерывном режиме (как правило, в десять раз больше), что используется, например, для импульсного сверления. Частота может достигать 500 Гц, в зависимости от длительности.

Модуляция добротности в волоконных лазерах действует также, как и в объемных. Типичная длительность импульса находится в диапазоне от наносекунды до микросекунды. Чем длиннее волокно, тем больше времени требуется для Q-переключения выходного излучения, что ведет к более продолжительному импульсу.

Свойства волокна накладывают некоторые ограничения на модуляцию добротности. Нелинейность волоконного лазера более значительна из-за малой площади поперечного сечения сердечника, так что пиковая мощность должна быть несколько ограничена. Можно использовать либо объемные переключатели добротности, которые дают более высокую производительность, или волоконные модуляторы, которые подсоединяются к концам активной части.

Импульсы с модуляцией добротности могут быть усилены в волокне или в объемном резонаторе. Пример последнего можно найти в Национальном комплексе имитации ядерных испытаний (NIF, Ливермор, Калифорния), где иттербиевый волоконный лазер является задающим генератором для 192 пучков. Малые импульсы в больших плитах из легированного стекла усиливаются до мегаджоулей.

У волоконных лазеров с синхронизацией частота повторения зависит от длины усиливающего материала, как и в других схемах синхронизации мод, а длительность импульса зависит от пропускной способности усиления. Самые короткие находятся в пределах 50 фс, а наиболее типичные - в диапазоне 100 фс.

Между эрбиевыми и иттербиевыми волокнами существует важное различие, в результате чего они работают в различных режимах дисперсии. Легированные эрбием волокна излучают при 1550 нм в области аномальной дисперсии. Это позволяет производить солитоны. Иттербиевые волокна находятся в области положительной или нормальной дисперсии; в результате они порождают импульсы с выраженной линейной частотой модуляции. В результате для сжатия длины импульса может понадобится брэгговская решетка.

Есть несколько способов изменения волоконно-лазерных импульсов, в частности, для сверхбыстрых пикосекундных исследований. Фотонно-кристаллические волокна могут быть изготовлены с очень малыми ядрами для получения сильных нелинейных эффектов, например, для генерации суперконтинуума. В противоположность этому фотонные кристаллы также могут быть изготовлены с очень большими одномодовыми сердечниками для избежания нелинейных эффектов при больших мощностях.

Гибкие фотонно-кристаллические волокна с большим сердечником создаются для применений, требующих высокой мощности. Одним из приемов состоит в намеренном изгибе такого волокна для устранения любых нежелательных мод высшего порядка с сохранением лишь основной поперечной моды. Нелинейность создает гармоники; с помощью вычитания и складывания частот можно создавать более короткие и более длинные волны. Нелинейные эффекты могут также производить сжатие импульсов, что приводит к появлению частотных гребенок.

В качестве источника суперконтинуума очень короткие импульсы производят широкий непрерывный спектр с помощью фазовой самомодуляции. Например, из начальных 6 пс импульсов при 1050 нм, которые создает иттербиевый волоконный лазер, получается спектр в диапазоне от ультрафиолета до более 1600 нм. Другой ИК-источник суперконтинуума накачивается эрбиевым источником на длине волны 1550 нм.

Большая мощность

Промышленность в настоящее время является крупнейшим потребителем волоконных лазеров. Большим спросом сейчас пользуется мощность порядка киловатта, применяемая в автомобилестроении. Автомобильная промышленность движется к выпуску автомобилей из высокопрочной стали, чтобы они отвечали требованиям долговечности и были относительно легкими для большей экономии топлива. Обычным станкам очень трудно, например, пробивать отверстия в этом виде стали, а источники когерентного излучения делают это легко.

Резка металлов волоконным лазером, по сравнению с квантовыми генераторами других типов, обладает рядом преимуществ. Например, ближний инфракрасный диапазон волн хорошо поглощается металлами. Луч может быть доставлен по волокну, что позволяет роботу легко перемещать фокус при резке и сверлении.

Оптоволокно удовлетворяет самым высоким требованиям к мощности. Оружие ВМФ США, испытанное в 2014 г., состоит из 6-волоконных 5,5-кВт лазеров, объединенных в один пучок и излучающих через формирующую оптическую систему. 33 кВт установка была использована для поражения Хотя луч не является одномодовым, система представляет интерес, так как позволяет создать волоконный лазер своими руками из стандартных, легкодоступных компонентов.

Самая высокая мощность одномодового источника когерентного излучения компании IPG Photonics составляет 10 кВт. Задающий генератор производит киловатт оптической мощности, которая подается в каскад усилителя с накачкой при 1018 нм со светом от других волоконных лазеров. Вся система имеет размер двух холодильников.

Применение волоконных лазеров распространилось также на высокомощную резку и сварку. Например, они заменили контактную сварку листовой стали, решая проблему деформации материала. Управление мощностью и другими параметрами позволяет очень точно резать кривые, особенно углы.

Самый мощный многомодовый волоконный лазер - установка для резки металлов того же производителя - достигает 100 кВт. Система основана на комбинации некогерентного пучка, так что это не луч сверхвысокого качества. Такая стойкость делает волоконные лазеры привлекательными для промышленности.

Бурение бетона

Многомодовый волоконный лазер мощностью 4 кВт может использоваться для резки и бурения бетона. Зачем это нужно? Когда инженеры пытаются достичь сейсмостойкости существующих зданий, нужно быть очень осторожным с бетоном. При установке в нем, например, стальной арматуры обычное ударное бурение может привести к появлению трещин и ослабить бетон, но волоконные лазеры режут его без дробления.

Квантовые генераторы с модулированной добротностью волокна используются, например, для маркировки или при производстве полупроводниковой электроники. Также они используются в дальномерах: модули размером с руку содержат безопасные для глаз волоконные лазеры, мощность которых составляет 4 кВт, частота 50 кГц и длительность импульса 5-15 нс.

Обработка поверхностей

Существует большой интерес в небольших волоконных лазерах для микро- и нанообработки. При снятии поверхностного слоя, если длительность импульса короче 35 пс, отсутствует разбрызгивание материала. Это исключает образование углублений и других нежелательных артефактов. Импульсы в фемтосекундном режиме производят нелинейные эффекты, которые не чувствительны к длине волны и не нагревают окружающее пространство, что позволяет работать без существенного повреждения или ослабления окружающих участков. Кроме того, отверстия могут быть разрезаны с большим отношением глубины к ширине - например, быстро (в течение нескольких миллисекунд) проделать небольшие отверстия в 1-мм нержавеющей стали с помощью 800-фс импульсов с частотой 1 МГц.

Можно также производить поверхностную обработку прозрачных материалов, например, глаза человека. Чтобы вырезать лоскут при микрохирургии глаза, фемтосекундные импульсы плотно фокусируются высокоапертурным объективом в точке ниже поверхности глаза, не вызывая никаких повреждений на поверхности, но разрушая материал глаза на контролируемой глубине. Гладкая поверхность роговицы, которая имеет важное значение для зрения, остается целой и невредимой. Лоскут, отделенный снизу, затем может быть подтянут для поверхностного эксимер-лазерного формирования линзы. Другие медицинские применения включают хирургию неглубокого проникновения в дерматологии, а также использование в некоторых видах оптической когерентной томографии.

Фемтосекундные лазеры

Фемтосекундные квантовые генераторы в науке используют для спектроскопии возбуждения с лазерным пробоем, флуоресцентной спектроскопии с временным разрешением, а также для общего исследования материалов. Кроме того, они нужны для производства фемтосекундных частотных гребенок, необходимых в метрологии и общих исследованиях. Одним из реальных применений в краткосрочной перспективе станут атомные часы для спутников GPS нового поколения, что позволит увеличить точность позиционирования.

Одночастотный волоконный лазер производится с шириной спектральной линии менее 1 кГц. Это впечатляюще небольшое устройство с выходом излучения мощностью от 10 мВт до 1 Вт. Находит применение в области связи, метрологии (например, в волоконных гироскопах) и спектроскопии.

Что дальше?

Что касается других научно-исследовательских применений, то еще многие из них изучаются. Например, военная разработка, которую можно применять и в других областях, заключающаяся в комбинировании волоконно-лазерных пучков для получения одного высококачественного луча с помощью когерентной или спектральной комбинации. В результате в одномодовом луче достигается большая мощность.

Производство волоконных лазеров быстро растет, особенно для нужд автомобилестроения. Также происходит замена неволоконных устройств волоконными. Помимо общих улучшений в стоимости и производительности, появляются все более практичные фемтосекундные квантовые генераторы и источники суперконтинуума. Волоконные лазеры занимают все больше ниш и становятся источником улучшения для лазеров других типов.

Волоконный лазер – это лазер с полностью или частично оптоволоконной реализацией, где из оптического волокна выполнены усиливающая среда и, в отдельных случаях, резонатор.


Волоконный лазер – это лазер с полностью или частично оптоволоконной реализацией, где из оптического волокн а выполнены усиливающая среда и, в отдельных случаях, резонатор. В зависимости от степени волоконной реализации лазер может быть цельноволоконным (активная среда и резонатор) или волоконно-дискретным (волоконный только резонатор или другие элементы ).

Волоконные лазеры могут работать в непрерывной, а также в нано- и фемтосекундной импульсной пульсации.

Конструкция лазера зависит от специфики их работы. Резонатором может быть система Фабри-Перо или резонатор кольцевой. В большинстве конструкций в качестве активной среды используется оптоволокно, допированное ионами редкоземельных элементов – тулий, эрбий, неодим, иттербий, празеодимий. Накачка лазера осуществляется с помощью одного или нескольких лазерных диодов непосредственно в сердцевину волокна или, в мощных системах, во внутреннюю оболочку.

Волоконные лазеры получили широкое применение благодаря широкому выбору параметров, возможности настройки импульса в широком диапазоне длительности, частот и мощностей.

Мощность волоконных лазеров – от 1 Вт до 30 кВт. Длина оптического волокна – до 20 м.


Применение волоконных лазеров:

резка металлов и полимеров в промышленном производстве,

прецизионная резка,

микрообработка металлов и полимеров,

обработка поверхностей,

пайка,

термообработка,

маркировка продукции,

телекоммуникация (оптоволоконные линии связи),

производство электроники,

производство медицинских приборов,

научное приборостроение.

Преимущества волоконных лазеров:

– волоконные лазеры являются уникальным инструментом, открывающим новую эру в обработке материалов,

портативность и возможность выбора длины волны волоконных лазеров позволяют реализовать новые эффективные применения недоступные для других типов ныне существующих лазеров,

– превосходят другие типы лазеров практически по всем существенным параметрам, важным с точки зрения их промышленного использования,

возможности настройки импульса в широком диапазоне длительности, частот и мощностей,

– возможность задания последовательности коротких импульсов с требуемой частотой и высокой пиковой мощностью , что необходимо, к примеру, для лазерной гравировки,

широкий выбор параметров.

Сравнение лазеров различных типов:

Параметр Требуется для использования в промышленности СО 2 YAG-Nd с ламповой накачкой YAG-Nd с диодной накачкой Диодные лазеры
Выходная мощность, кВт 1…30 1…30 1…5 1…4 1…4 1…30
Длина волны, мкм как можно меньше 10,6 1,064 1,064 или 1,03 0,8…0,98 1,07
BPP, мм х мрад < 10 3…6 22 22 > 200 1,3…14
КПД, % > 20 8…10 2…3 4…6 25…30 20…25
Дальность доставки излучения волокном 10…300 отсутствует 20…40 20…40 10…50 10..300
Стабильность выходной мощности как можно выше низкая низкая низкая высокая очень высокая
Чувствительность к обратному отражению как можно ниже высокая высокая высокая низкая низкая
Занимаемая площадь, кв.м как можно меньше 10…20 11 9 4 0,5
Стоимость монтажа, отн.ед. как можно меньше 1 1 0,8 0,2 < 0,05
Стоимость эксплуатации, отн.ед. как можно меньше 0,5 1 0,6 0,2 0,13
Стоимость обслуживания, отн.ед. как можно меньше 1…1,5 1 4…12 4…10 0,1
Периодичность замены ламп или лазерных диодов, час. как можно больше 300…500 2000…5000 2000…5000 > 50 000


2000w cw оптико raycus импульсный волоконный иттербиевый лазер 50 вт 100 квт купить производитель
волоконные твердотельные лазеры
резка металлов фанеры обалденная cernark гравировка режимы глубокой гравировки волоконным лазером
устройство иттербиевого волоконного лазера
волоконная машина продаю лазер
принцип работы производство фрязино 1.65 мкм технология иттербиевый купить цена ipg лс 1 оптический для резки металла гравировка импульсный принцип работы станок оптико применения мощность своими руками устройство схема длина волны сварка производитель режет волнами

Коэффициент востребованности 902

Под волоконными лазерами понимают твердотельные лазеры с оптической накачкой, активным элементом в которых является волоконный световод с добавками лазерных активаторов. Наиболее перспективными для световодных систем являются лазеры на волокнах, активированных ионами неодима Ионы неодима имеют две основные лазерные линии с центральными длинами волн мкм и мкм, лежащими в спектральном диапазоне, где потери и дисперсия света в кварцевых волокнах минимальны.

Рис. 4.11. Зависимость длины ретрансляционного участка от скорости передачи информации для ступенчатого световода с затуханием для мкм:

1 - для лазерного диода (спад характеристики на участке ВС обусловлен межмодовой дисперсией) 2 - для сбетоизлучающего диода (спад характеристики обусловлен на участке широким спектром диода, на участке - дополнительно спадом частотной характеристики)

Спектральные характеристики усиления неодима практически не зависят от внешних условий, темпер атурный дрейф длины волны, соответствующей максимуму усилений ионов неодима, равен тогда как для полупроводниковых сред этот параметр составляет Волоконная конструкция излучателя позволяет с помощью стандартных разъемов эффективно вводить излучение в волоконные световоды, в том числе и одномодовые.

Несмотря на эти достоинства и, как будет показано ниже, широкие функциональные возможности, волоконные лазеры до сих пор не вышли из стадии исследований. Объясняется это тем, что при создании волоконно-оптических систем многие задачи решались с использованием хорошо разработанных полупроводниковых излучателей, особенно во внедряемых в первую очередь достаточно простых системах, где определяющую роль играет одно из основных преимуществ полупроводниковых источников - возможность прямой модуляции интенсивности излучения током накачки. В твердотельных лазерах, в частности в лазерах на средах, активированных неодимом, скоростная модуляция интенсивности излучения изменением мощности накачки принципиально невозможна в силу сравнительно большого времени продольной релаксации. Невозможность быстрого «включения» инверсной населенности ограничивает частоты прямой модуляции значениями Гц. Развитие световодных систем, особенно перспективных систем ближайшего будущего с когерентным приемом и многоканальным спектральным

уплотнением стимулирует разработки волоконных лазеров, которые могут использоваться не только как генераторы, но и как усилители света.

Существующие конструкции волоконных лазеров можно разделить на три группы. В волоконных лазерах первой группы используются жгуты из нескольких волокон большой длины и мощная накачка импульсными газоразрядными лампами . Положительная обратная связь в таких конструкциях образуется за счет отражения света от торцов волокон и обратного рассеяния на микроизгибах и неоднородностях.

Рис. 4.12. Конструкции волоконных лазеров а - с торцовой накачкой; б - с поперечной накачкой дляволокон малого диаметра, в-с непосредственной укладкой волокон на линейку - излучающая площадка - зеркало резонатора лазера, прозрачное для излучения , 13 - активное волокно, 5 - зеркало резонатора; 6 - оптический клей, 8 - отражатель, 9 - стеклянный цилиидр, 10, 12 - радиаторы; 11, 14 - линейки СИД

Ламповая накачка позволяет реализовать высокие коэффициенты усиления за один проход, однако требует применения систем жидкостного принудительного охлаждения и громоздких блоков питания, что, по-видимому, делает малореальным создание малогабаритных устройств. Определенные перспективы в этом смысле могут заключаться в применении газоразрядных микроламп . К достоинствам конструкций с ламповой накачкой следует отнести возможность использования их в качестве оптических усилителей бегущей волны и регенеративных усилителей с достаточно высоким (~30-40 дБ) усилением.

В конструкциях волоконных лазеров второй группы используются короткие отрезки монокристаллических и стеклянных волокон, активированных ионами неодима. Накачка производится через торец волокна полупроводниковым лазером или СИД. Достаточно высокая эффективность накачки достигается в результате согласования спектра излучения полупроводникового излучателя на ДГС GaAlAs с одной из интенсивных линий поглощения неодима с центральной длиной волны около

0,81 мкм. Схематически конструкция волоконных лазеров второй группы изображена на рис. 4.12, а. Вследствие малого коэффициента усиления активной среды резонатор лазера образуется

диэлектрическими зеркалами с высоким коэффициентом отражения. Такую конструкцию имеют лазеры на монокристаллическом волокне из алюмоиттриевого граната с неодимом стеклянных кварцевых волокнах с неодимом . Имеются сообщения о генерации с торцовой накачкой криптоновым лазером в кристаллическом волокне и с накачкой аргоновым лазером в волокне из рубина Лучшие результаты были получены при использовании кристалла имеющего волоконную геометрию, длиной 0,5 см и диаметром 80 мкм. Внешний резонатор (рис. 4.12, а) был образован зеркалами с диэлектрическим покрытием, одно из которых имело коэффициент отражения для лазерного излучения с мкм и всего лишь для излучения накачки, второе зеркало с таким же высоким коэффициентом отражения для лазерного излучения достаточно хорошо отражало свет накачки Зеркала были расположены практически вплотную к торцам волокна. Накачка осуществлялась поверхностным СИД на с диаметром излучающей площадки 85 мкм. Пороговая мощность накачки составляла

Основные достоинства волоконных лазеров такой конструкции - малые потребляемая мощность и габаритные размеры. Основные недостатки: торцовая схема накачки не позволяет использовать отрезки волокна с длиной более 1 см, что ограничивает выходную мощность. Кроме того, технология изготовления и юстировки этих лазеров сложна, а наличие СИД накачки у одного из торцов усложняет использование лазера в качестве усилителя оптических сигналов.

Многовитковые волоконные лазеры с поперечной накачкой линейками СИД (рис. представляют конструкции третьей группы . На линейку СИД укладывается несколько витков стеклянного волокна, сердцевина которого активирована ионами неодима. Конструкция в определенной мере сочетает достоинства волоконных лазеров первой и второй групп и лишена большей части их недостатков. Применение в качестве источников накачки полупроводниковых излучателей делает такие системы достаточно малогабаритными, использование поперечной схемы накачки и длинных отрезков волокна позволяет получить достаточно большое усиление за один проход. Ввиду малого диаметра волоконных световодов в схеме с поперечной накачкой эффективным является использование волокон из стекол с высокой концентрацией ионов неодима и соответственно с большим коэффициентом поглощения света накачки. Такими свойствами обладают волокна, выполненные из ультрафосфатов неодима . Многовитковая укладка волокна на линейки светодиодов может быть выполнена разными способами . Так, отрезок волокна многократно протягивается сквозь стеклянный цилиндр диаметром около 1 мм (рис. 4.12, б), на наружную поверхность которого нанесено отражающее покрытие для

увеличения эффективности использования излучения накачки. Этот способ предпочтителен для волокон с малым внешним диаметром ( мкм). Волокна большего диаметра могут быть уложены на линейку СИД виток к витку (рис. 4.12, в). Обе конструкции могут использоваться как оптические усилители бегущей волны, при этом один из концов световода является входом усилителя, второй - выходом. Нанесение зеркальных покрытий на торцы волокон позволяет осуществлять лазерную генерацию с волоконным резонатором Фабри - Перо.

Особенности лазерных процессов в активных волоконных световодах определяются наличием специфической лазерной генерации в отсутствие положительной обратной связи.

Рис. 4.13. Волоконный световод: а - с активной сердцевиной и пассивной обо» лочкой; б - с пассивной сердцевиной и активной оболочкой (2)

В этом состоит основное отличие волоконных лазеров от лазеров на объемных активных элементах. Чтобы пояснить сущность этого процесса, близкого к режиму суперлюминесценции в полупроводниковых СИД, рассмотрим некоторый элементарный участок световода, в котором создана инверсная населенность (рис. 4.13, а). Спонтанное излучение происходит равновероятно во всех направлениях, однако излучение, сосредоточенное в двух конусах углов, имеющих общую с волокном ось и определяемых углом раскрыва 20, не выходит из сердцевины. Здесь

где - соответственно показатели преломления сердцевины и оболочки Это излучение возбуждает собственные колебания (моды) световода, которые усиливаются посредством стимулированного излучения в процессе распространения по волокну вправо и влево (рис. 4.13, а). Та же картина наблюдается для любого другого элементарного участка активной сердцевины световода. На выходе такого волоконного источника света расходимость излучения приближенно определяется числовой апертурой волокна

До тех пор пока интенсивность световых волн, распространяющихся навстречу друг другу в активном световоде, значительно меньше величины, насыщающей усиление, встречные волны независимы, равно как независимы и энергии, переносимые различными модами световода. В этих условиях процесс усиления спонтанного излучения за счет вынужденного описывается хорошо известными уравнениями лазерного усилителя без насыщения и с учетом спонтанного излучения. Спектральная плотность мощности излучения в одной моде на выходе активного участка световода длиной (рис. 4.13, а) равна

Здесь - постоянная Планка; - частота световых колебаний; - населенности верхнего и нижнего лазерных уровней; - коэффициента усиления на единицу длины, где - коэффициент Эйнштейна для вынужденного перехода; - нормированная форма спектральной линии усиления; с - скорость света. Максимальная генерируемая мощность может ограничиваться либо длиной световода либо, как и в лазерах с резонаторами, насыщением. Естественно, что в процессе усиления происходит сужение спектра генерации по сравнению со спектром люминесценции за счет того, что спектральные компоненты в центре линии усиливаются больше. Ширина спектра определяется усилением и формой причем спектр излучения из-за отсутствия резонатора является сплошным.

Рассматриваемый специфический световодный лазерный процесс имеет три существенных аспекта .

1. Активный волоконный световод может использоваться как источник света без оптического резонатора.

2. При создании волоконных лазеров по традиционной схеме с резонатором необходимо учитывать, что рассмотренный процесс может привести к насыщению усиления за один проход, в результате чего обратная связь потеряет смысл. В этом случае значения и необходимо выбирать так, чтобы была далека от значения, насыщающего усиление.

3. В волоконных оптических усилителях генерация света в результате рассмотренного процесса является основным источником шума. Спектральная плотность мощности шума в одной моде, пересчитанная на вход усилителя, как следует из формулы (4.12), равна

В четырехуровневой системе, каковой является схема лазерных уровней неодима, обычно и при больших усилениях

В объемных усилителях шум усиленного спонтанного излучения издавна считается принципиально неустранимым (см., например, работу ), однако в волоконных усилителях возможно значительное снижение его уровня при использовании световода, изображенного на рис. 4.13, 6. Одномодовое волокно, сердцевина которого изготовлена из кварцевого стекла с добавкой, повышающей показатель преломления, например имеет оболочку из стекла, активированного ионами неодима. Создание инверсной населенисстн в оболочке приводит к усилению моды сердцевины с эффективным коэффициентом усиления

где - коэффициент усиления в оболочке; - часть мощности моды сердцевины, которая распространяется в оболочке; Р - общая мощность, переносимая этой модой. Соотношение меняется от 0,99 до 0,1 при изменении параметра волокна от 0,6 до 2,4048 . При сердцевина начинает эффективно направлять основную моду путем локализации ее поля вблизи себя, возбуждается вторая мода. Формула получена тем же способом, что и выражение для коэффициента затухания волокна с оболочкой, в которой происходят потери излучения уступают по своим качествам волоконным. Существенными недостатками первых являются температурная нестабильность линии усиления ( для мкм), значительные потери при стыковке одномодовых волоконных световодов с планарным световодом усилителя и высокий уровень мощности шума - излучения суперлюминесценцни.

Волоконные лазеры открывают возможности для создания новых типов ВОД. Чувствительный элемент, которым является волоконный световод, представляет собой здесь часть волоконного кольцевого или линейного резонатора лазера.

Рис. 4.14. Одночастотные волоконные лазеры с распределенной обратной связью (а) и брэгговскими зеркалами (б): 1 - активная сердцевина; 2 - оболочка с периодической структурой

Изменение фазы световых колебаний под действием внешних факторов приводит в лазерах к изменению частот генерации различных мод. Информация о внешних воздействиях содержится в изменении частоты межмодовых биений. На основе волоконного лазера с кольцевым резонатором, который реализуется сваркой концов световода или разъемным их соединением, достаточно просто создать малогабаритный лазерный волоконный гироскоп.

Стабильные одночастотные волоконные лазеры могут быть выполнены в виде конструкции с распределенной обратной связью или с распределенным брэгговским отражением. Для этого на определенных участках волокна одним из способов, которые будут описаны ниже (см. п. 4.8), создается волоконный отражающий спектральный фильтр (рис. 4.14). Такие источники могут использоваться в фазовых ВОД.

Использование суперлюминесцентных волоконных лазеров позволяет упростить конструкцию пассивных волоконных гироскопов и повысить их чувствительность за счет снижения уровня шумов, вызванных наличием объемных элементов. В кольцевых интерферометрах гироскопах уровень шумов снижается при уменьшении длины когерентности излучения источника и числа объемных элементов (см. п. 3.6). В волоконном источнике легко добиться, чтобы длина когерентности излучения была больше, чем разность хода встречных волн интерферометра, обусловленная вращением и невзаимными эффектами. Суперлюминесцентные волоконные лазеры имеют ширину спектра нм и достаточно высокую импульсную мощность Такой источник

соединяется с волоконным кольцевым интерферометром с помощью стандартных, ответвителей.




 
Статьи по теме:
Презентация на тему чарльз роберт дарвин Презентация на тему чарльз дарвин биология
ДАРВИН И ТЕОРИЯ ЭВОЛЮЦИИ Преподаватель химии и биологии Лепешенко Татьяна Ивановна ГБОУ НПО РО ПУ № 61 Г. Новошахтинск Ростовской области Цель урока: Рассмотреть теорию эволюции Чарльза Дарвина как целостное учение; сформировать представление об основны
Урок-презентация
Анна Горенко (Ахматова - псевдоним, взятый, по собственным словам, в честь прабабушки, татарской княжны Ахматовой) родилась 11 (23) июня 1889 года под Одессой (Большой Фонтан). Её отец был в то время отставной инженер-механик флота. Годовалым ребенком она
Презентация на тему:
МКОУ «Торбеевская основная школа имени А.И. Данилова» Новодугинского района, Смоленской области История возникновения театра в России Выполнила: учитель начальных классов Смирнова А.А. д.Торбеево 2016 г. Народное творчество Русский театр зародился в
Презентация по биологии
Описание презентации по отдельным слайдам: 1 слайд Описание слайда: 2 слайд Описание слайда: Биотехнология занимает 2-е место по инвестиционной привлекательности после информационных технологий. Биотехнология (БТ) - дисциплина, изучающая