Формулы хим веществ. Химические формулы. Формулы по химии для решения задач

Ну и чтобы завершить знакомство со спиртами, приведу ещё формулу другого известного вещества - холестерина . Далеко не все знают, что он является одноатомным спиртом!

|`/`\\`|<`|w>`\`/|<`/w$color(red)HO$color()>\/`|0/`|/\<`|w>|_q_q_q<-dH>:a_q|0<|dH>`/<`|wH>`\|dH; #a_(A-72)<_(A-120,d+)>-/-/<->`\

Гидроксильную группу в нём я обозначил красным цветом.

Карбоновые кислоты

Любой винодел знает, что вино должно храниться без доступа воздуха. Иначе оно скиснет. Но химики знают причину - если к спирту присоединить ещё один атом кислорода, то получится кислота.
Посмотрим на формулы кислот, которые получаются из уже знакомых нам спиртов:
Вещество Скелетная формула Брутто-формула
Метановая кислота
(муравьиная кислота)
H/C`|O|\OH HCOOH O//\OH
Этановая кислота
(уксусная кислота)
H-C-C\O-H; H|#C|H CH3-COOH /`|O|\OH
Пропановая кислота
(метилуксусная кислота)
H-C-C-C\O-H; H|#2|H; H|#3|H CH3-CH2-COOH \/`|O|\OH
Бутановая кислота
(масляная кислота)
H-C-C-C-C\O-H; H|#2|H; H|#3|H; H|#4|H CH3-CH2-CH2-COOH /\/`|O|\OH
Обобщённая формула {R}-C\O-H {R}-COOH или {R}-CO2H {R}/`|O|\OH

Отличительной особенностью органических кислот является наличие карбоксильной группы (COOH), которая и придаёт таким веществам кислотные свойства.

Все, кто пробовал уксус, знают что он весьма кислый. Причиной этого является наличие в нём уксусной кислоты. Обычно столовый уксус содержит от 3 до 15% уксусной кислоты, а остальное (по большей части) - вода. Употребление в пищу уксусной кислоты в неразбавленном виде представляет опасность для жизни.

Карбоновые кислоты могут иметь несколько карбоксильных групп. В этом случае они называются: двухосновная , трёхосновная и т.д...

В пищевых продуктах содержится немало других органических кислот. Вот только некоторые из них:

Название этих кислот соответствует тем пищевым продуктам, в которых они содержатся. Кстати, обратите внимание, что здесь встречаются кислоты, имеющие и гидроксильную группу, характерную для спиртов. Такие вещества называются оксикарбоновыми кислотами (или оксикислотами).
Внизу под каждой из кислот подписано, уточняющее название той группы органических веществ, к которой она относится.

Радикалы

Радикалы - это ещё одно понятие, которое оказало влияние на химические формулы. Само слово наверняка всем известно, но в химии радикалы не имеют ничего общего с политиками, бунтовщиками и прочими гражданами с активной позицией.
Здесь это всего лишь фрагменты молекул. И сейчас мы разберёмся, в чём их особенность и познакомимся с новым способом записи химических формул.

Выше по тексту уже несколько раз упоминались обобщённые формулы: спирты - {R}-OH и карбоновые кислоты - {R}-COOH . Напомню, что -OH и -COOH - это функциональные группы. А вот R - это и есть радикал. Не зря он изображается в виде буквы R.

Если выражаться более определённо, то одновалентным радикалом называется часть молекулы, лишённая одного атома водорода. Ну а если отнять два атома водорода, то получится двухвалентный радикал.

Радикалы в химии получили собственные названия. Некоторые из них получили даже латинские обозначения, похожие на обозначения элементов. И кроме того, иногда в формулах радикалы могут быть указаны в сокращённом виде, больше напоминающем брутто-формулы.
Всё это демонстрируется в следующей таблице.

Название Структурная формула Обозначение Краткая формула Пример спирта
Метил CH3-{} Me CH3 {Me}-OH CH3OH
Этил CH3-CH2-{} Et C2H5 {Et}-OH C2H5OH
Пропил CH3-CH2-CH2-{} Pr C3H7 {Pr}-OH C3H7OH
Изопропил H3C\CH(*`/H3C*)-{} i-Pr C3H7 {i-Pr}-OH (CH3)2CHOH
Фенил `/`=`\//-\\-{} Ph C6H5 {Ph}-OH C6H5OH

Думаю, что здесь всё понятно. Хочу только обратить внимание на колонку, где приводятся примеры спиртов. Некоторые радикалы записываются в виде, напоминающем брутто-формулу, но функциональная группа записывается отдельно. Например, CH3-CH2-OH превращается в C2H5OH .
А для разветвлённых цепочек вроде изопропила применяются конструкции со скобочками.

Существует ещё такое явление, как свободные радикалы . Это радикалы, которые по каким-то причинам отделились от функциональных групп. При этом нарушается одно из тех правил, с которых мы начали изучение формул: число химических связей уже не соответствует валентности одного из атомов. Ну или можно сказать, что одна из связей становится незакрытой с одного конца. Обычно свободные радикалы живут короткое время, ведь молекулы стремятся вернуться в стабильное состояние.

Знакомство с азотом. Амины

Предлагаю познакомиться с ещё одним элементом, который входит в состав многих органических соединений. Это азот .
Он обозначается латинской буквой N и имеет валентность, равную трём.

Посмотрим, какие вещества получаются, если к знакомым нам углеводородам присоединить азот:

Вещество Развёрнутая структурная формула Упрощенная структурная формула Скелетная формула Брутто-формула
Аминометан
(метиламин)
H-C-N\H;H|#C|H CH3-NH2 \NH2
Аминоэтан
(этиламин)
H-C-C-N\H;H|#C|H;H|#3|H CH3-CH2-NH2 /\NH2
Диметиламин H-C-N<`|H>-C-H; H|#-3|H; H|#2|H $L(1.3)H/N<_(A80,w+)CH3>\dCH3 /N<_(y-.5)H>\
Аминобензол
(Анилин)
H\N|C\\C|C<\H>`//C<|H>`\C<`/H>`||C<`\H>/ NH2|C\\CH|CH`//C<_(y.5)H>`\HC`||HC/ NH2|\|`/`\`|/_o
Триэтиламин $slope(45)H-C-C/N\C-C-H;H|#2|H; H|#3|H; H|#5|H;H|#6|H; #N`|C<`-H><-H>`|C<`-H><-H>`|H CH3-CH2-N<`|CH2-CH3>-CH2-CH3 \/N<`|/>\|

Как Вы уже наверное догадались из названий, все эти вещества объединяются под общим названием амины . Функциональная группа {}-NH2 называется аминогруппой . Вот несколько обобщающих формул аминов:

В общем, никаких особых новшеств здесь нет. Если эти формулы Вам понятны, то можете смело заниматься дальнейшим изучением органической химии, используя какой-нибудь учебник или интернет.
Но мне бы хотелось ещё рассказать о формулах в неорганической химии. Вы убедитесь, как их легко будет понять после изучения строения органических молекул.

Рациональные формулы

Не следует делать вывод о том, что неорганическая химия проще, чем органическая. Конечно, неорганические молекулы обычно выглядят гораздо проще, потому что они не склонны к образованию таких сложных структур, как углеводороды. Но зато приходится изучать более сотни элементов, входящих в состав таблицы Менделеева. А элементы эти имеют склонность объединяться по химическим свойствам, но с многочисленными исключениями.

Так вот, ничего этого я рассказывать не буду. Тема моей статьи - химические формулы. А с ними как раз всё относительно просто.
Наиболее часто в неорганической химии употребляются рациональные формулы . И мы сейчас разберёмся, чем же они отличаются от уже знакомых нам.

Для начала, познакомимся с ещё одним элементом - кальцием. Это тоже весьма распространённый элемент.
Обозначается он Ca и имеет валентность, равную двум. Посмотрим, какие соединения он образует с известными нам углеродом, кислородом и водородом.

Вещество Структурная формула Рациональная формула Брутто-формула
Оксид кальция Ca=O CaO
Гидроксид кальция H-O-Ca-O-H Ca(OH)2
Карбонат кальция $slope(45)Ca`/O\C|O`|/O`\#1 CaCO3
Гидрокарбонат кальция HO/`|O|\O/Ca\O/`|O|\OH Ca(HCO3)2
Угольная кислота H|O\C|O`|/O`|H H2CO3

При первом взгляде можно заметить, что рациональная формула является чем то средним между структурной и брутто-формулой. Но пока что не очень понятно, как они получаются. Чтобы понять смысл этих формул, нужно рассмотреть химические реакции, в которых участвуют вещества.

Кальций в чистом виде - это мягкий белый металл. В природе он не встречается. Но его вполне возможно купить в магазине химреактивов. Он обычно хранится в специальных баночках без доступа воздуха. Потому что на воздухе он вступает в реакцию с кислородом. Собственно, поэтому он и не встречается в природе.
Итак, реакция кальция с кислородом:

2Ca + O2 -> 2CaO

Цифра 2 перед формулой вещества означает, что в реакции участвуют 2 молекулы.
Из кальция и кислорода получается оксид кальция. Это вещество тоже не встречается в природе потому что он вступает в реакцию с водой:

CaO + H2O -> Ca(OH2)

Получается гидроксид кальция. Если присмотреться к его структурной формуле (в предыдущей таблице), то видно, что она образована одним атомом кальция и двумя гидроксильными группами, с которыми мы уже знакомы.
Таковы законы химии: если гидроксильная группа присоединяется к органическому веществу, получается спирт, а если к металлу - то гидроксид.

Но и гидроксид кальция не встречается в природе из-за наличия в воздухе углекислого газа. Думаю, что все слыхали про этот газ. Он образуется при дыхании людей и животных, сгорании угля и нефтепродуктов, при пожарах и извержениях вулканов. Поэтому он всегда присутствует в воздухе. Но ещё он довольно хорошо растворяется в воде, образуя угольную кислоту:

CO2 + H2O <=> H2CO3

Знак <=> говорит о том, что реакция может проходить в обе стороны при одинаковых условиях.

Таким образом, гидроксид кальция, растворённый в воде, вступает в реакцию с угольной кислотой и превращается в малорастворимый карбонат кальция:

Ca(OH)2 + H2CO3 -> CaCO3"|v" + 2H2O

Стрелка вниз означает, что в результате реакции вещество выпадает в осадок.
При дальнейшем контакте карбоната кальция с углекислым газом в присутствии воды происходит обратимая реакция образования кислой соли - гидрокарбоната кальция, который хорошо растворим в воде

CaCO3 + CO2 + H2O <=> Ca(HCO3)2

Этот процесс влияет на жесткость воды. При повышении температуры гидрокарбонат обратно превращается в карбонат. Поэтому в регионах с жесткой водой в чайниках образуется накипь.

Из карбоната кальция в значительной степени состоят мел, известняк, мрамор, туф и многие другие минералы. Так же он входит в состав кораллов, раковин моллюсков, костей животных и т.д...
Но если карбонат кальция раскалить на очень сильном огне, то он превратится в оксид кальция и углекислый газ.

Этот небольшой рассказ о круговороте кальция в природе должен пояснить, для чего нужны рациональные формулы. Так вот, рациональные формулы записываются так, чтобы были видны функциональные группы. В нашем случае это:

Кроме того, отдельные элементы - Ca, H, O(в оксидах) - тоже являются самостоятельными группами.

Ионы

Думаю, что пора знакомиться с ионами. Это слово наверняка всем знакомо. А после изучения функциональных групп, нам ничего не стоит разобраться, что же представляют собой эти ионы.

В общем, природа химических связей обычно заключается в том, что одни элементы отдают электроны, а другие их получают. Электроны - это частицы с отрицательным зарядом. Элемент с полным набором электронов имеет нулевой заряд. Если он отдал электрон, то его заряд становится положительным, а если принял - то отрицатеньным. Например, водород имеет всего один электрон, который он достаточно легко отдаёт, превращаясь в положительный ион. Для этого существует специальная запись в химических формулах:

H2O <=> H^+ + OH^-

Здесь мы видим, что в результате электролитической диссоциации вода распадается на положительно заряженный ион водорода и отрицательно заряженную группу OH. Ион OH^- называется гидроксид-ион . Не следует его путать с гидроксильной группой, которая является не ионом, а частью какой-то молекулы. Знак + или - в верхнем правом углу демонстрирует заряд иона.
А вот угольная кислота никогда не существует в виде самостоятельного вещества. Фактически, она является смесью ионов водорода и карбонат-ионов (или гидрокарбонат-ионов):

H2CO3 = H^+ + HCO3^- <=> 2H^+ + CO3^2-

Карбонат-ион имеет заряд 2-. Это означает, что к нему присоединились два электрона.

Отрицательно заряженные ионы называются анионы . Обычно к ним относятся кислотные остатки.
Положительно заряженные ионы - катионы . Чаще всего это водород и металлы.

И вот здесь наверное можно полностью понять смысл рациональных формул. В них сначала записывается катион, а за ним - анион. Даже если формула не содержит никаких зарядов.

Вы наверное уже догадываетесь, что ионы можно описывать не только рациональными формулами. Вот скелетная формула гидрокарбонат-аниона:

Здесь заряд указан непосредственно возле атома кислорода, который получил лишний электрон, и поэтому лишился одной чёрточки. Проще говоря, каждый лишний электрон уменьшает количество химических связей, изображаемых в структурной формуле. С другой стороны, если у какого-то узла структурной формулы стоит знак +, то у него появляется дополнительная палочка. Как всегда, подобный факт нужно продемонстрировать на примере. Но среди знакомых нам веществ не встречается ни одного катиона, который состоял бы из нескольких атомов.
А таким веществом является аммиак . Его водный раствор часто называется нашатырный спирт и входит в состав любой аптечки. Аммиак является соединением водорода и азота и имеет рациональную формулу NH3 . Рассмотрим химическую реакцию, которая происходит при растворении аммиака в воде:

NH3 + H2O <=> NH4^+ + OH^-

То же самое, но с использованием структурных формул:

H|N<`/H>\H + H-O-H <=> H|N^+<_(A75,w+)H><_(A15,d+)H>`/H + O`^-# -H

В правой части мы видим два иона. Они образовались в результате того, что один атом водорода переместился из молекулы воды в молекулу аммиака. Но этот атом переместился без своего электрона. Анион нам уже знаком - это гидроксид-ион. А катион называется аммоний . Он проявляет свойства, схожие с металлами. Например, он может объединиться с кислотным остатком. Вещество, образованное соединением аммония с карбонат-анионом называется карбонат аммония: (NH4)2CO3 .
Вот уравнение реакции взаимодействия аммония с карбонат-анионом, записанное в виде структурных формул:

2H|N^+<`/H><_(A75,w+)H>_(A15,d+)H + O^-\C|O`|/O^- <=> H|N^+<`/H><_(A75,w+)H>_(A15,d+)H`|0O^-\C|O`|/O^-|0H_(A-15,d-)N^+<_(A105,w+)H><\H>`|H

Но в таком виде уравнение реакции дано в демонстрационных целях. Обычно уравнения используют рациональные формулы:

2NH4^+ + CO3^2- <=> (NH4)2CO3

Система Хилла

Итак, можно считать, что мы уже изучили структурные и рациональные формулы. Но есть ещё один вопрос, который стоит рассмотреть подробнее. Чем же всё-таки отличаются брутто-формулы от рациональных?
Мы знаем почему рациональная формула угольной кислоты записывается H2CO3 , а не как-то иначе. (Сначала идут два катиона водорода, а за ними карбонат-анион). Но почему брутто-формула записывается CH2O3 ?

В принципе, рациональная формула угольной кислоты вполне может считаться истинной формулой, ведь в ней нет повторяющихся элементов. В отличие от NH4OH или Ca(OH)2 .
Но к брутто-формулам очень часто применяется дополнительное правило, определяющее порядок следования элементов. Правило довольно простое: сначала ставится углерод, затем водород, а дальше остальные элементы в алфавитном порядке.
Вот и выходит CH2O3 - углерод, водород, кислород. Это называется системой Хилла. Она используется практически во всех химических справочниках. И в этой статье тоже.

Немного о системе easyChem

Вместо заключения мне хотелось бы рассказать о системе easyChem. Она разработана для того, чтобы все те формулы, которые мы тут обсуждали, можно было легко вставить в текст. Собственно, все формулы в этой статье нарисованы при помощи easyChem.

Зачем вообще нужна какая-то система для вывода формул? Всё дело в том, что стандартный способ отображения информации в интернет-браузерах - это язык гипертекстовой разметки (HTML). Он ориентирован на обработку текстовой информации.

Рациональные и брутто-формулы вполне можно изобразить при помощи текста. Даже некоторые упрощённые структурные формулы тоже могут быть записаны текстом, например спирт CH3-CH2-OH . Хотя для этого пришлось бы в HTML использовать такую запись: CH3-CH2-OH .
Это конечно создаёт некоторые трудности, но с ними можно смириться. Но как изобразить структурную формулу? В принципе, можно использовать моноширинный шрифт:

H H | | H-C-C-O-H | | H H Выглядит конечно не очень красиво, но тоже осуществимо.

Настоящая проблема возникает при попытке изобразить бензольные кольца и при использовании скелетных формул. Здесь не остаётся иного пути, кроме подключения растрового изображения. Растры хранятся в отдельных файлах. Браузеры могут подключать изображения в формате gif, png или jpeg.
Для создания таких файлов требуется графический редактор. Например, Фотошоп. Но я более 10 лет знаком с Фотошопом и могу сказать точно, что он очень плохо подходит для изображения химических формул.
Гораздо лучше с этой задачей справляются молекулярные редакторы . Но при большом количестве формул, каждая из которых хранится в отдельном файле, довольно легко в них запутаться.
Например, число формул в этой статье равно . Из них выведены виде графических изображений (остальные при помощи средств HTML).

Система easyChem позволяет хранить все формулы прямо в HTML-документе в текстовом виде. По-моему, это очень удобно.
Кроме того, брутто-формулы в этой статье вычисляются автоматически. Потому что easyChem работает в два этапа: сначала текстовое описание преобразуется в информационную структуру (граф), а затем с этой структурой можно выполнять различные действия. Среди них можно отметить следующие функции: вычисление молекулярной массы, преобразование в брутто-формулу, проверка на возможность вывода в виде текста, графическая и текстовая отрисовка.

Таким образом, для подготовки этой статьи я пользовался только текстовым редактором. Причём, мне не пришлось думать, какая из формул будет графической, а какая - текстовой.

Вот несколько примеров, раскрывающих секрет подготовки текста статьи: Описания из левого столбца автоматически превращаются в формулы во втором столбце.
В первой строчке описание рациональной формулы очень похоже на отображаемый результат. Разница только в том, что числовые коэффициенты выводятся подстрочником.
Во второй строке развёрнутая формула задана в виде трёх отдельных цепочек, разделённых символом; Я думаю, нетрудно заметить, что текстовое описание во многом напоминает те действия, которые потребовались бы для изображения формулы карандашом на бумаге.
В третьей строке демонстрируется использование наклонных линий при помощи символов \ и /. Значок ` (обратный апостроф) означает, что линия проводится справа налево (или снизу вверх).

Здесь есть гораздо более подробная документация по использованию системы easyChem.

На этом разрешите закончить статью и пожелать удачи в изучении химии.

Краткий толковый словарь использованных в статье терминов

Углеводороды Вещества, состоящие из углерода и водорода. Отличаются друг от друга структурой молекул. Структурные формулы схематические изображения молекул, где атомы обозначаются латинскими буквами, а химические связи - чёрточками. Структурные формулы бывают развёрнутыми, упрощёнными и скелетными. Развёрнутые структурные формулы - такие структурные формулы, где каждый атом представлен в виде отдельного узла. Упрощённые структурные формулы - такие структурные формулы, где атомы водорода записаны рядом с тем элементом, с которым они связаны. А если к одному атому крепится больше одного водорода, то количество записывается в виде числа. Так же можно сказать, что в качестве узлов в упрощённых формулах выступают группы. Скелетные формулы - структурные формулы, где атомы углерода изображаются в виде пустых узлов. Число атомов водорода, связанных с каждым атомом углерода равно 4 минус число связей, которые сходятся в узле. Для узлов, образованных не углеродом, применяются правила упрощённых формул. Брутто-формула (она же истинная формула) - список всех химических элементов, которые входят в состав молекулы, с указанием количества атомов в виде числа (если атом один, то единица не пишется) Система Хилла - правило, определяющее порядок следования атомов в брутто-формуле: первым ставится углерод, затем водород, а далее остальные элементы в алфавитном порядке. Это а система используется очень часто. И все брутто-формулы в этой статье записаны по системе Хилла. Функциональные группы Устойчивые сочетания атомов, которые сохраняются в процессе химических реакций. Часто функциональные группы имеют собственные названия, влияют на химические свойства и научное название вещества

Ключевые слова: Химия 8 класс. Все формулы и определения, условные обозначения физических величин, единицы измерения, приставки для обозначения единиц измерения, соотношения между единицами, химические формулы, основные определения, кратко, таблицы, схемы.

1. Условные обозначения, названия и единицы измерения
некоторых физических величин, используемых в химии

Физическая величина Обозначение Единица измерения
Время t с
Давление p Па, кПа
Количество вещества ν моль
Масса вещества m кг, г
Массовая доля ω Безразмерная
Молярная масса М кг/моль, г/моль
Молярный объем V n м 3 /моль, л/моль
Объем вещества V м 3 , л
Объемная доля Безразмерная
Относительная атомная масса A r Безразмерная
M r Безразмерная
Относительная плотность газа А по газу Б D Б (А) Безразмерная
Плотность вещества р кг/м 3 , г/см 3 , г/мл
Постоянная Авогадро N A 1/моль
Температура абсолютная Т К (Кельвин)
Температура по шкале Цельсия t °С (градус Цельсия)
Тепловой эффект химической реакции Q кДж/моль

2. Соотношения между единицами физических величин

3. Химические формулы в 8 классе

4. Основные определения в 8 классе

  • Атом - мельчайшая химически неделимая частица вещества.
  • Химический элемент - определённый вид атомов.
  • Молекула - мельчайшая частица вещества, сохраняющая его состав и химические свойства и состоящая из атомов.
  • Простые вещества - вещества, молекулы которых состоят из атомов одного вида.
  • Сложные вещества - вещества, молекулы которых состоят из атомов разного вида.
  • Качественный состав вещества показывает, из атомов каких элементов оно состоит.
  • Количественный состав вещества показывает число атомов каждого элемента в его составе.
  • Химическая формула - условная запись качественного и количественного состава вещества посредством химических символов и индексов.
  • Атомная единица массы (а.е.м.) - единица измерения массы атома, равная массы 1/12 атома углерода 12 С.
  • Моль - количество вещества, в котором содержится число частиц, равное числу атомов в 0,012 кг углерода 12 С.
  • Постоянная Авогадро (Na = 6*10 23 моль -1) - число частиц, содержащихся в одном моле.
  • Молярная масса вещества (М ) - масса вещества, взятого в количестве 1 моль.
  • Относительная атомная масса элемента А r - отношение массы атома данного элемента m 0 к 1/12 массы атома углерода 12 С.
  • Относительная молекулярная масса вещества М r - отношение массы молекулы данного вещества к 1/12 массы атома углерода 12 С. Относительная молекулярная масса равна сумме относительных атомных масс химических элементов, образующих соединение, с учётом числа атомов данного элемента.
  • Массовая доля химического элемента ω(Х) показывает, какая часть относительной молекулярной массы вещества X приходится на данный элемент.

АТОМНО-МОЛЕКУЛЯРНОЕ УЧЕНИЕ
1. Существуют вещества с молекулярным и немолекулярным строением.
2. Между молекулами имеются промежутки, размеры которых зависят от агрегатного состояния вещества и температуры.
3. Молекулы находятся в непрерывном движении.
4. Молекулы состоят из атомов.
6. Атомы характеризуются определённой массой и размерами.
При физических явлениях молекулы сохраняются, при химических, как правило, разрушаются. Атомы при химических явлениях перегруппировываются, образуя молекулы новых веществ.

ЗАКОН ПОСТОЯНСТВА СОСТАВА ВЕЩЕСТВА
Каждое химически чистое вещество молекулярного строения независимо от способа получения имеет постоянный качественный и количественный состав.

ВАЛЕНТНОСТЬ
Валентность - свойство атома химического элемента присоединять или замещать определённое число атомов другого элемента.

ХИМИЧЕСКАЯ РЕАКЦИЯ
Химическая реакция — явление, в результате которого из одних веществ образуются другие. Реагенты — вещества, вступающие в химическую реакцию. Продукты реакции — вещества, образующиеся в результате реакции.
Признаки химических реакций:
1. Выделение теплоты (света).
2. Изменение окраски.
3. Появление запаха.
4. Образование осадка.
5. Выделение газа.

  • Химическое уравнение — запись химической реакции с помощью химических формул. Показывает, какие вещества и в каком количестве вступают в реакцию и получаются в результате реакции.

ЗАКОН СОХРАНЕНИЯ МАССЫ ВЕЩЕСТВ
Масса веществ, вступивших в химическую реакцию, равна массе веществ, образовавшихся в результате реакции. В результате химических реакций атомы не исчезают и не возникают, а происходит их перегруппировка.

Важнейшие классы неорганических веществ

Конспект урока «Химия 8 класс. Все формулы и определения».

Следующая тема: «».

Величина и ее размерность

Соотношение

Атомная масса элемента Х (относительная)

Порядковый номер элемента

Z = N (е –) = N (р +)

Массовая доля элемента Э в веществе Х, в долях единицы, в %)


Количество вещества Х, моль

Количество вещества газа, моль

V m = 22,4 л/моль (н.у.)

н.у. – р = 101 325 Па, Т = 273 К

Молярная масса вещества Х, г/моль, кг/моль

Масса вещества X, г, кг

m (X) = n (X)M (X)

Молярный объем газа, л/моль, м 3 /моль

V m = 22,4 л/моль при н.у.

Объем газа, м 3

V = V m ×n

Выход продукта



Плотность вещества Х, г/л, г/мл, кг/м 3

Плотность газообразного вещества Х по водороду

Плотность газообразного вещества Х по воздуху

М (воздуха) = 29 г/моль

Объединенный газовый закон

Уравнение Менделеева-Клапейрона

PV = nRT , R = 8,314 Дж/моль×К

Объемная доля газообразного вещества в смеси газов, в долях единицы или в %

Молярная масса смеси газов

Молярная доля вещества (Х) в смеси

Количество теплоты, Дж, кДж

Q = n (X)Q (X)

Тепловой эффект реакции

Q =– H

Теплота образования вещества Х, Дж/моль, кДж/моль

Скорость химической реакции (моль/лсек)

Закон действия масс

(для простой реакции)

a A + в B = с С + d D

u = k с a (A)с в (B)

Правило Вант-Гоффа

Растворимость вещества (Х) (г/100 г растворителя)

Массовая доля вещества Х в смеси А + Х, в долях единицы, в %

Масса раствора, г, кг

m (р-р) = m (X) + m (H 2 O)

m (р-р) = V (р-р)(р-р)

Массовая доля растворенного вещества в растворе, в долях единицы, в %

Плотность раствора

Объем раствора, см 3 , л, м 3

Молярная концентрация, моль/л

Степень диссоциации электролита (Х), в долях единицы или %

Ионное произведение воды

K (H 2 O) =

Водородный показатель

рН = –lg

Основная:

Кузнецова Н.Е. и др . Химия. 8 кл-10 кл.. – М.: Вентана-Граф, 2005-2007.

Кузнецова Н.Е., Литвинова Т.Н., Левкин А.Н. Химия.11 класс в 2-х частях, 2005-2007 гг.

Егоров А.С. Химия. Новое учебное пособие для подготовки в вузы. Ростов н/Д: Феникс, 2004.– 640 с.

Егоров а.С. Химия: современный курс для подготовки к егэ. Ростов н/д: Феникс, 2011. (2012)– 699 с.

Егоров А.С. Самоучитель по решению химических задач. – Ростов-на-Дону: Феникс, 2000.– 352 с.

Химия/пособие-репетитор для поступающих в вузы. Ростов-н/Д, Феникс, 2005– 536 с.

Хомченко Г.П.,Хомченко И.Г . Задачи по химии для поступающих в вузы. М.: Высшая школа. 2007.–302с.

Дополнительная:

Врублевский А.И . Учебно-тренировочные материалы для подготовки к централизованному тестированию по химии/ А.И. Врублевский –Мн.: ООО «Юнипресс», 2004.– 368 с.

Врублевский А.И . 1000 задач по химии с цепочками превращений и контрольными тестами для школьников и абитуриентов.– Мн.: ООО «Юнипресс», 2003.– 400 с.

Егоров А.С . Все типы расчетных задач по химии для подготовки к ЕГЭ.–Ростов н/Д: Феникс, 2003.–320с.

Егоров А.С., Аминова Г.Х . Типовые задания и упражнения для подготовки к экзамену по химии. – Ростов н/Д: Феникс, 2005.– 448 с.

Единый государственный экзамен 2007. Химия. Учебно-тренировочные материалы для подготовки учащихся/ФИПИ – М.: Интеллект-Центр, 2007.– 272 с.

ЕГЭ-2011. Химия. Учебно-тренировочный комплект под ред. А.А. Кавериной.– М.: Национальное образование, 2011.

Единственные реальные варианты заданий для подготовки к единому государственному экзамену. ЕГЭ.2007. Химия/В.Ю. Мишина, Е.Н. Стрельникова. М.: Федеральный центр тестирования, 2007.–151с.

Каверина А.А . Оптимальный банк заданий для подготовки учащихся. Единый государственный экзамен 2012.Химия. Учебное пособие./ А.А. Каверина, Д.Ю. Добротин, Ю.Н. Медведев, М.Г. Снастина.– М.: Интеллект-Центр, 2012.– 256 с.

Литвинова Т.Н., Выскубова Н.К., Ажипа Л.Т., Соловьева М.В . Тестовые задания в дополнение к контрольным работам для слушателей 10-месячных заочных подготовительных курсов (методические указания). Краснодар, 2004. – С. 18 – 70.

Литвинова Т.Н . Химия. ЕГЭ-2011. Тренировочные тесты. Ростов н/Д: Феникс, 2011.– 349 с.

Литвинова Т.Н . Химия. Тесты к ЕГЭ. Ростов н/Д.: Феникс, 2012. - 284 с.

Литвинова Т.Н . Химия. Законы, свойства элементов и их соединений. Ростов н/Д.: Феникс, 2012. - 156 с.

Литвинова Т.Н., Мельникова Е.Д., Соловьева М.В ., Ажипа Л.Т., Выскубова Н.К. Химия в задачах для поступающих в вузы.– М.: ООО «Изд-во Оникс»: ООО «Изд-во «Мир и образование», 2009.– 832 с.

Учебно-методический комплекс по химии для учащихся медико-биологических классов под ред. Т.Н.Литвиновой.– Краснодар.: КГМУ, – 2008.

Химия. ЕГЭ–2008. Вступительные испытания, учебно-методическое пособие / под ред. В.Н. Доронькина. – Ростов н/Д: Легион, 2008.– 271 с

Список сайтов по химии:

1. Alhimik. http :// www . alhimik . ru

2. Химия для всех. Электронный справочник за полный курс химии.

http :// www . informika . ru / text / database / chemy / START . html

3. Школьная химия – справочник. http :// www . schoolchemistry . by . ru

4. Репетитор по химии. http://www. chemistry.nm.ru

Интернет-ресурсы

    Alhimik. http :// www . alhimik . ru

    Химия для всех. Электронный справочник за полный курс химии.

http :// www . informika . ru / text / database / chemy / START . html

    Школьная химия – справочник. http :// www . schoolchemistry . by . ru

    http://www.classchem.narod.ru

    Репетитор по химии. http://www. chemistry.nm.ru

    http://www.alleng.ru/edu/chem.htm - образовательные ресурсы Интернета по химии

    http://schoolchemistry.by.ru/ - школьная химия. На этом сайте есть возможность пройти On-line тестирование по разным темам, а также демонстрационные варианты Единого Государственного Экзамена

    Химия и жизнь–ХХ1 век: научно-популярный журнал. http :// www . hij . ru

В уроке рассматривается алгоритм составления химических формул веществ по известным валентностям химических элементов. Учитель объяснит два разных способа вывода химической формулы вещества.

2. определим число общих единиц валентности, оно равно наименьшему общему кратному валентностей элементов: НОК (2,4)= 4;

3. определим число атомов каждого химического элемента в молекуле, разделив число общих единиц валентности на валентность элемента;

4. запишем формулу вещества: SO 2 .

Пример 2 . Составим формулу вещества, образованного атомами фосфора (с валентностью V) и атомами кислорода.

1. Запишем знаки элементов и над ними укажем их валентности: .

2. Найдем число общих единиц валентности: НОК(2,5)=10

3. Найдем число атомов фосфора в молекуле: 10:5=2.

4. Найдем число атомов кислорода в молекуле: 10:2=5.

5. Запишем формулу вещества: .

Рис. 2. Составление химической формулы оксида фосфора

1. Емельянова Е.О., Иодко А.Г. Организация познавательной деятельности учащихся на уроках химии в 8-9 классах. Опорные конспекты с практическими заданиями, тестами: Часть I. - М.: Школьная Пресса, 2002. (с.33)

2. Ушакова О.В. Рабочая тетрадь по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006. (с. 36-38)

3. Химия: 8-й класс: учеб. для общеобр. учреждений / П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005.(§16)

4. Химия: неорг. химия: учеб. для 8 кл. общеобразоват. учреждений / Г.Е. Рудзитис, Ф.Г. Фельдман. - М.: Просвещение, ОАО «Московские учебники», 2009. (§§11,12)

5. Энциклопедия для детей. Том 17. Химия / Глав. ред.В.А. Володин, вед. науч. ред. И. Леенсон. - М.: Аванта+, 2003.

Дополнительные веб-ресурсы

1. Единая коллекция цифровых образовательных ресурсов ().

2. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

1. с.84 №№ 3,4 из учебника «Химия: 8-й класс» (П.А. Оржековский, Л.М. Мещерякова, Л.С. Понтак. М.: АСТ: Астрель, 2005).

2. с. 38 № 9 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.

В любой науке есть своя система обозначений. Химия в этом плане не исключение. Вам уже известно, что для обозначения химических элементов используются символы, образованные от латинских названий элементов. Химические элементы способны образовывать как простые, так и сложные вещества, состав которых можно выразить химической формулой.

Чтобы написать химическую формулу простого вещества необходимо записать символ химического элемента, который образует простое вещество, и справа внизу записать цифру, показывающую количество его атомов. Данная цифра называется индексом.

Например, химическая формула кислорода – О2. Цифра 2 после символа кислорода – это индекс, указывающий, что молекула кислорода состоит из двух атомов элемента кислорода.

Индекс – число, показывающее в химической формуле количество атомов определенного типа Чтобы написать химическую формулу сложного вещества, необходимо знать, из атомов каких элементов оно состоит (качественный состав), и число атомов каждого элемента (количественный состав).

Например, химическая формула пищевой соды – NaHCO3. В состав этого вещества входят атомы натрия, водорода, углерода, кислорода – это его качественный состав. Атомов натрия, водорода, углерода по одному, а атомов кислорода – три. Это количественный состав соды

  • Качественный состав вещества показывает, атомы каких элементов входят в его состав
  • Количественный состав вещества показывает количество атомов, которые входят в его состав

Химическая формула – условная запись состава вещества при помощи химических символов и индексов

Обратите внимание на то, что если в химической формуле присутствует только один атом одного вида, индекс 1 не ставится. Например, формулу углекислого газа записывают так – CO2, а не С1О2.

Как правильно понимат ь химические формулы?

При записи химических формул нередко встречаются цифры, которые записывают перед химической формулой.

Например, 2Na, или 5О2. Что обозначают эти цифры и для чего они нужны? Цифры, записанные перед химической формулой, называют коэффициентами.

Коэффициенты показывают общее количество частиц вещества: атомов, молекул, ионов.

Коэффициент – число, которое показывает общее количество частиц.

Коэффициент записывается перед химической формулой вещества молекул кислорода. Обратите внимание, что молекулы не могут состоять из одного атома, минимальное количество атомов в молекуле – два.

  • Таким образом, записи: 2Н, 4P обозначают два атома водорода и четыре атома фосфора соответственно.
  • Запись 2Н2 обозначает две молекулы водорода, содержащие по два атома элемента водорода.
  • Запись 4S8 – обозначает четыре молекулы серы, каждая из которых содержит восемь атомов элемента серы.
  • Подобная система обозначений количества частиц используется и для ионов. Запись 5K+ обозначает пять ионов калия .

Стоит отметить, что ионы могут быть образованы не только атомом одного элемента.

  • Ионы, образованные атомами одного химического элемента, называют простыми: Li+, N3−.
  • Ионы, образованные несколькими химическими элементами, называют сложными: OH⎺, SO4 2−. Обратите внимание, что заряд иона обозначают верхним индексом.

А что будет обозначать запись 2NaCl ?

Если на этот вопрос ответить – две молекулы поваренной соли, то ответ не правильный. Поваренная соль, или хлорид натрия, имеет ионную кристаллическую решетку, то есть это ионное соединение и состоит из ионов Na+ и Сl⎺ . Пару этих ионов называют формульной единицей вещества. Таким образом, запись 2NaCl обозначает две формульных единицы хлорида натрия. Термин формульная единица используют так же и для веществ атомного строения.

Формульная единица наименьшая частица вещества немолекулярного строения Ионные соединения так же электронейтральны, как и молекулярные. Значит, положительный заряд катионов полностью уравновешен отрицательным зарядом анионов. Например, какова формульная единица вещества, состоящего из ионов Ag+ и PO4 3−? Очевидно, что для компенсации отрицательного заряда иона (заряд –3), необходимо иметь заряд +3. С учетом того, что катион серебра имеет заряд +1, то таких катионов понадобиться три. Значит формульная единица (формула) данного вещества – Ag3PO4.

Таким образом, при помощи символов химических элементов, индексов и коэффициентов, можно четко составить химическую формулу вещества, которая даст информацию, как о качественном, так и о количественном составе вещества.

В завершение рассмотрим, как правильно произносить химические формулы. Например, запись 3Ca2+ произносится: «три иона кальций два плюс» или «три иона кальция с зарядом два плюс». Запись 4НСl , произносится «четыре молекулы аш хлор». Запись 2NaCl , произносится как «две формульных единицы хлорида натрия».

Закон постоянства состава вещества

Одно и то же химическое соединение можно получить различными способами. Так, например, углекислый газ, CO2 , образуется при сжигании топлива: угля, природного газа. Во фруктах содержится много глюкозы. При длительном хранении фрукты начинают портиться, начинается процесс, называемый брожением глюкозы, в результате которого выделяется углекислый газ.

Углекислый газ образуется и при нагревании таких горных пород, как мел, мрамор, известняк. Химические реакции совершенно разные, но вещество, образовавшееся в результате их протекания, имеет одинаковый качественный и количественный состав – CO2.

Эта закономерность касается, в основном, веществ молекулярного строения. В случае веществ немолекулярного строения, возможны случаи, когда состав вещества зависит от методов его получения.

Закон постоянства состава веществ молекулярного строения: состав сложного вещества всегда одинаков и не зависит от способа его получения

Итог статьи по теме Химические формулы веществ :

  • Индекс – число, показывающее в химической формуле количество атомов определенного типа
  • Качественный состав вещества показывает, атомы каких элементов входят в его состав
  • Количественный состав вещества показывает количество атомов, которые входят в его состав
  • Химическая формула – условная запись состава вещества при помощи химических символов и индексов (если нужно)
  • Коэффициент – число, которое показывает общее количество частиц. Коэффициент записывается перед химической формулой вещества
  • Формульная единица – наименьшая частица вещества атомного или ионного строения


 
Статьи по теме:
В чём польза и вред молочного жира и что такое его заменитель?
Подсчитано, что среднестатистический человек съедает за день приблизительно 2.5 кг еды, в год это выходит почти 1000 кг. На сегодняшний момент на планете Земля проживает около 7 миллиардов человек. С каждым днем население нашей планеты увеличивается.Что б
Способы приготовления тефтелей со щукой
Наряду с котлетами и фрикадельками большой популярностью у хозяек пользуются и тефтели. Их главная особенность в трех ключевых моментах: форме, наполнении и подаче. Это блюдо тюркского происхождения в виде шариков (по размеру крупнее фрикаделей). Готови
Щавелевый суп с говядиной рецепт классический Суп щавелевый с мясом
Приветствую вас, дорогие читатели кулинарного блога! Из мы уже знаем, что суп из щавеля является одним из вкуснейших и простых в приготовление блюд. Продуктов на него тратится мало, поэтому суп очень экономичен. А также же растение богато различными витам
Зразы картофельные с курицей и грибами — рецепт
Картофель очистить, нарезать кусочками, залить водой и поставить на огонь. Довести до кипения, воду посолить, варить картошку до готовности (25-30 минут) на небольшом огне. Лук очистить, нарезать мелко, обжарить на растительном масле, помешивая, до золоти