Две технологии использования электрической энергии. Производство и использование электрической энергии. История российской электроэнергетики

Электрическая энергия производится на различных масштабах электрических станциях, в основном, с помощью индукционных электромеханических генераторов.

Производство электроэнергии

Существует два основных типа электростанций:

1. Тепловые.

2. Гидравлические.

Это деление вызвано типом двигателя, который вращает ротор генератора. В тепловых электростанциях в качестве источника энергии используется топливо: уголь, газ, нефть, горючие сланцы, мазут. Ротор приводится во вращение паровыми газовыми турбинами.

Самыми экономичными являются тепловые паротурбинные электростанции (ТЭС). Их максимальный КПД достигает 70%. Это с учетом того, что отработанный пар используется на промышленных предприятиях.

На гидроэлектростанциях для вращения ротора используется потенциальная энергия воды. С помощью гидравлических турбин приводится во вращение ротор. Мощность станции будет зависеть от напора и массы воды, проходящей через турбину.

Использование электроэнергии

Электрическая энергия используется почти повсеместно. Конечно, большая часть производимой электроэнергии приходится на промышленность. Помимо этого, крупным потребителем будет являться транспорт.

Многие железнодорожные линии уже давно перешли на электрическую тягу. Освещение жилищ, улиц городов, производственные и бытовые нужды сел и деревень - все это тоже является крупным потребителем электроэнергии.

Огромная часть получаемой электроэнергии превращается в механическую энергию. Все механизмы, используемые в промышленности, приводятся в движение за счет электродвигателей. Потребителей электроэнергии достаточно, и находятся они повсюду.

А производится электроэнергия лишь в немногих местах. Возникает вопрос о передаче электроэнергии, причем на большие расстояния. При передаче на большие расстояния, происходит много потерь электроэнергии. Главным образом, это потери на нагрев электропроводов.

По закону Джоуля-Ленца энергия, расходуемая на нагрев, вычисляется по формуле:

Так как снизить сопротивление до приемлемого уровня практически невозможно, то приходится уменьшать силу тока. Для этого повышают напряжение. Обычно на станциях стоят повышающие генераторы, а в конце линий передач стоят понижающие трансформаторы. И уже с них энергия расходится по потребителям.

Потребность в электрической энергии постоянно увеличивается. Для того чтобы соответствовать запросам на увеличение потребления есть два пути:

1. Строительство новых электростанций

2. Использование передовых технологий.

Эффективное использование электроэнергии

Первый способ требует затрат большого числа строительных и денежных ресурсов. На строительство одной электростанции тратится несколько лет. К тому же, например, тепловые электростанции потребляют много невозобновляемых природных ресурсов, и наносят вред окружающей природной среде.

>> Производство и использование электрической энергии

§ 39 ПРОИЗВОДСТВО и ИСПОЛЬЗОВАНИЕ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ

В nanie время уровень производства и потребления энергии - один из важнейших показателей развития производственных сил обпдества. Ведущую роль при этом играет электроэнергия - самая универсальная и удобная для использования форма энергии. Если потребление энергии в мире увеличивается в 2 раза примерно за 25 лет, то увеличение потребления электроэнергии в 2 раза происходит в среднем за 10 лет. Это означает, что все больше и больше процессов, связанных с расходованием энергоресурсов, переводится на электроэнергию.

Производство электроэнергии. Производится электроэнергия на больших и малых электрических станциях в основном с помощью электромеханических индукционных генераторов. Существует два основных типа электростанций: тепловые и гидроэлектрические. Различаются эти электростанции двигателями, вращающими роторы генераторов.

На тепловых электростанциях источником энергии является топливо: уголь, газ, нефть, мазут, горючие сланцы. Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания. Наиболее экономичны крупные тепловые паротурбинные электростанции (сокращенно: ТЭС). Большинство ТЭС нашей страны использует в качестве топлива уго.пьную пыль. Для выработки 1 кВт ч электроэнергии затрачивается несколько сот граммов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кинетическая энергия струй пара передается ротору. Вал турбины жестко соединен с валом генератора. Паровые турбогенераторы весьма быстроходны: число оборотов ротора составляет несколько тысяч в минуту.

Из курса физики 10 класса известно, что КПД тепловых двигателей увеличивается с повышением температуры нагревателя и соответственно начальной температуры рабочего тела (пара, газа). Поэтому поступающий в турбину пар доводят до высоких параметров: температуру - почти до 550 °С и давление - до 25 МПа. Коэффициент полезного действия ТЭС достигает 40%. Большая часть энергии теряется вместе с горячим отработанным паром. Превращения энергии показаны на схеме, приведенной на рисунке 5.5.

Тепловые электростанции - так называемые теплоэлектроцентрали (ТЭЦ) - позволяют значительную часть энергии отработанного пара использовать на промышленных предприятиях и для бытовых нужд (для отопления и горячего водоснабжения). В результате КПД ТЭЦ достигает 60-70%. В настоящее время в России ТЭЦ дают около 40% всей электроэнергии и снабжают электроэнергией и теплом сотни городов.

На гидроэлектростанциях (ГЭС) для вращения роторов генераторов используется потенциальная энергия воды. Роторы электрических генераторов приводятся во вращение гидравлическими турбинами. Мощность такой станции зависит от создаваемой плотиной разности уровней воды (напор) и от массы воды, проходящей через турбину в каждую секунду (расход воды). Превращения энергии показаны на схеме, приведенной на рисунке 5.6.

Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии.

Значительную роль в энергетике играют атомные электростанции (АЭС). В настоящее время АЭС в России дают около 10% электроэнергии.

Использование электроэнергии. Главным потребителем электроэнергии является промышленность, на долю которой приходится около 70% производимой электроэнергии. Крупным потребителем является также транспорт. Все большее количество железнодорожных линий переводится на электрическую тягу. Почти все деревни и села получают электроэнергию от электростанций для производственных и бытовых нужд. О применении электроэнергии для освещения жилищ и в бытовых электроприборах знает каждый.

Большая часть используемой электроэнергии сейчас превращается в механическую энергию. Почти все механизмы в промышленности приводятся в движение электрическими двигателями. Они удобны, компактны, допускают возможность автоматизации производства.

Около трети электроэнергии, потребляемой промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов , электролиз и т. п.).

Современная цивилизация немыслима без широкого использования электроэнергии. Нарушение снабжения электроэнергией большого города при аварии парализует его жизнь.


1. Приведите примеры машин и механизмов, в которых совершенно не использовался бы электрический ток!
2. Находились ли вы возле генератора электрического тока на расстоянии, не превышающем 100 м!
3. Чего лишились бы жители большого города при аварии электрической сети!

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Физика и астрономия за 11 класс бесплатно скачать , планы конспектов уроков, готовимся к школе онлайн

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Электроэнергия производится на электрических станциях зачастую при помощи электромеханических индукционных генераторов. Существует 2 основных вида электростанций — тепловые электростанции (ТЭС) и гидроэлектрические электростанции (ГЭС) — различающиеся характером двигателей, которые вращают роторы генераторов.

Источником энергии на ТЭС является топливо: мазут, горючие сланцы, нефть, угольная пыль. Роторы электрогенераторов приводятся во вращение при помощи паровых и газовых турбин либо двигателями внутреннего сгорания (ДВС).

Как известно, КПД тепловых двигателей увеличивается с ростом начальной температуры рабочего тела. Поэтому пар, который поступает в турбину, доводят до порядка 550 °С при давлении около 25 МПа . КПД ТЭС достигает 40 %.

На тепловых электростанциях (ТЭЦ) большая часть энергии отработанного пара применяется на промышленных предприятиях и для бытовых нужд. КПД ТЭЦ может достигать 60-70 %.

На ГЭС для вращения роторов генераторов применяют потенциальную энергию воды. Ро-торы приводятся во вращение гидравлическими турбинами.

Мощность станции зависит от разности уровней воды , которые создаются плотиной (напо-ра), и от массы воды, которая проходит через турбину за 1 секунду (расхода воды).

Часть электроэнергии, которая потребляется в России (примерно 10 %), производится на атомных электростанциях (АЭС).

Передача электроэнергии.

В основном, этот процесс сопровождается существенными потерями, которые связаны с нагревом проводов линий электропередачи током. Согласно закону Джоуля-Ленца энергия, которая расходуется на нагрев проводов, является пропорциональной квадрату силы тока и сопротивлению линии, так что при большой длине линии передача электроэнергии может стать экономически невыгодной. Поэтому нужно уменьшать силу тока , что при заданной передаваемой мощнос-ти приводит к необходимости увеличения напряжения. Чем длиннее линия электропередачи, тем выгоднее применять большие напряжения (на некоторых напряжение достигает 500 кВ). Генераторы переменного тока выдают напряжения, которые не могут быть больше 20 кВ (что связано со свойствами используемых изоляционных материалов).

Поэтому на электростанциях ставят повышающие трансформаторы, которые увеличивают напряжение и во столько же раз уменьшают силу тока. Для подачи потребителям электроэнергии необходимого (низкого) напряжения на концах линии электропередачи ставят трансфор-маторы понижающие. Понижение напряжения обычно производится поэтапно.

Использование электроэнергии.

Основные потребители электроэнергии:

  1. промышленность — 70%;
  2. транспорт (электрическая тяга);
  3. бытовые потребители (освещение жилищ, электроприборы).

Практически вся используемая электроэнергия переходит в механическую энергию. Практически все механизмы в промышленности приводятся в движение электродвигателями.

Примерно треть электроэнергии, которая потребляется промышленностью, используется для технологических целей (электросварка, электрический нагрев и плавление металлов, электролиз и так далее).

«Физика - 11 класс»

Производство электроэнергии

Производится электроэнергия на электрических станциях в основном с помощью электромеханических индукционных генераторов.
Существует два основных типа электростанций: тепловые и гидроэлектрические.
Различаются эти электростанции двигателями, вращающими роторы генераторов.

На тепловых электростанциях источником энергии является топливо: уголь, газ, нефть, мазут, горючие сланцы.
Роторы электрических генераторов приводятся во вращение паровыми и газовыми турбинами или двигателями внутреннего сгорания.

Тепловые паротурбинные электростанции - ТЭС наиболее экономичны.

В паровом котле свыше 90% выделяемой топливом энергии передается пару.
В турбине кинетическая энергия струй пара передается ротору.
Вал турбины жестко соединен с валом генератора.
Паровые турбогенераторы весьма быстроходны: число оборотов ротора составляет несколько тысяч в минуту.

КПД тепловых двигателей увеличивается с повышением начальной температуры рабочего тела (пара, газа).
Поэтому поступающий в турбину пар доводят до высоких параметров: температуру - почти до 550 °С и давление - до 25 МПа.
Коэффициент полезного действия ТЭС достигает 40%. Большая часть энергии теряется вместе с горячим отработанным паром.


Тепловые электростанции - ТЭЦ позволяют значительную часть энергии отработанного пара использовать на промышленных предприятиях и для бытовых нужд.
В результате КПД ТЭЦ достигает 60-70%.
В России ТЭЦ дают около 40% всей электроэнергии и снабжают электроэнергией сотни городов.


На гидроэлектростанциях - ГЭС для вращения роторов генераторов используется потенциальная энергия воды.


Роторы электрических генераторов приводятся во вращение гидравлическими турбинами.
Мощность такой станции зависит от создаваемого плотиной напора и массы воды, проходящей через турбину в каждую секунду.

Гидроэлектростанции дают около 20% всей вырабатываемой в нашей стране электроэнергии.

Атомные электростанции - АЭС в России дают около 10% электроэнергии.


Использование электроэнергии


Главным потребителем электроэнергии является промышленность - 70% производимой электроэнергии.
Крупным потребителем является также транспорт.

Большая часть используемой электроэнергии сейчас превращается в механическую энергию, т.к. почти все механизмы в промышленности приводятся в движение электрическими двигателями.

Передача электроэнергии

Электроэнергию не удается консервировать в болыпих масштабах.
Она должна быть потреблена сразу же после получения.
Поэтому возникает необходимость в передаче электроэнергии на большие расстояния.

Передача электроэнергии связана с заметными потерями, так как электрический ток нагревает провода линий электропередачи. В соответствии с законом Джоуля - Ленца энергия, расходуемая на нагрев проводов линии, определяется формулой

где
R - сопротивление линии,
U - передаваемое напряжение,
Р - мощность источника тока.

При очень большой длине линии передача энергии может стать экономически невыгодной.
Значительно снизить сопротивление линии R практически весьма трудно, поэтому приходится уменьшать силу тока I.

Так как мощность источника тока Р равна произведению силы тока I на напряжение U, то для уменьшения передаваемой мощности нужно повысить передаваемое напряжение в линии передачи.

Для этого на крупных электростанциях устанавливают повышающие трансформаторы.
Трансформатор увеличивает напряжение в линии во столько же раз, во сколько раз уменьшает силу тока.

Чем длиннее линия передачи, тем выгоднее использовать более высокое напряжение. Генераторы переменного тока настраивают на напряжения, не превышающие 16-20 кВ. Более высокое напряжение потребовало бы принятия сложных специальных мер для изоляции обмоток и других частей генераторов.

Это достигается с помощью понижающих трансформаторов.

Понижение напряжения (и соответственно увеличение силы тока) осуществляются поэтапно.

При очень высоком напряжении между проводами может начаться разряд, приводящий к потерям энергии.
Допустимая амплитуда переменного напряжения должна быть такой, чтобы при заданной площади поперечного сечения провода потери энергии вследствие разряда были незначительными.

Электрические станции объединены высоковольтными линиями электропередачи, образуя общую электрическую сеть, к которой подключены потребители.
Такое объединение, называемое энергосистемой, дает возможность распределять нагрузки потребления энергии.
Энергосистема обеспечивает бесперебойность подачи энергии потребителям.
Сейчас в нашей стране действует Единая энергетическая система европейской части страны.

Использование электроэнергии

Потребность в электроэнергии постоянно увеличивается как в промышленности, на транспорте, в научных учреждениях, так и в быту. Удовлетворить эту потребность можно двумя основными способами.

Первый - строительство новых мощных электростанций: тепловых, гидравлических и атомных.
Однако строительство крупной электростанции требует нескольких лет и больших затрат.
Кроме того, тепловые электростанции потребляют невозобновляемые природные ресурсы: уголь, нефть и газ.
Одновременно они наносят большой ущерб равновесию на нашей планете.
Передовые технологии позволяют удовлетворить потребности в электроэнергии другим способом.

Второй - эффективное использование электроэнергии: современные люминесцентные лампы, экономия освещения.

Большие надежды возлагаются на получение энергии с помощью управляемых термоядерных реакций.

Приоритет должен быть отдан увеличению эффективности использования электроэнергии, а не повышению мощности электростанций.

Переменное напряжение можно преобразовывать - повышать или понижать.

Устройства, с помощью которых можно преобразовывать напряжение называются трансформаторами. Работа трансформаторов основана наявлении электромагнитной индукции.

Устройство трансформатора

Трансформатор состоит из ферромагнитного сердечника, на который надеты две катушки .

Первичной обмоткой называется катушка, подключенная к источнику переменного напряжения U 1 .

Вторичной обмоткой называется катушка, которую можно подключать к приборам, потребляющим электрическую энергию .

Приборы, потребляющие электрическую энергию, выполняют роль нагрузки, и на них создается переменное напряжение U 2 .

Если U 1 > U 2 , то трансформатор называется понижающим, а еслиU 2 > U 1 - то повышающим.

Принцип работы

В первичной обмотке создается переменный ток, следовательно, в ней создается переменный магнитный поток. Этот поток замыкается в ферромагнитном сердечнике и пронизывает каждый виток обеих обмоток. В каждом из витков обеих обмоток появляется одинаковая ЭДС индукции e i 0

Если n 1 и n 2 - число витков в первичной и вторичной обмотках соответственно, то

ЭДС индукции в первичной обмотке e i 1 = n 1 * e i 0 ЭДС индукции во вторичной обмотке e i 2 = n 1 * e i 0

где e i 0 - ЭДС индукции, возникающая в одном витке вторичной и первичной катушки .

    1. Передача электроэнергии

П
ередача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой.Потери энергии (мощности) на нагревание проводов можно рассчитать по формуле

Для уменьшения потерь на нагревания проводов необходимо увеличить напряжение. Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется переменный ток частотой 50 Гц. На рисунке представлена схема линии передачи электроэнергии от электростанции до потребителя. Схема дает представление об использовании трансформаторов при передаче электроэнергии

41. Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн. Свойства электромагнитных волн. Идеи теории Максвелла

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку законаэлектромагнитной индукции, открытого Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле .

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Однажды начавшийся процесс взаимного порождения магнитного и электрического полей должен далее непрерывно продолжаться и захватывать все новые области пространства.

Вывод:

Существует особая форма материи – электромагнитное поле – которое состоит из порождающих друг друга вихревых электрического и магнитного полей.

Электромагнитное поле характеризуется двумя векторными величинами – напряженностью Е вихревого электрического поля и индукцией В магнитного поля .

Процесс распространения изменяющихся вихревых электрического и магнитного полей в пространстве называется электромагнитной волной.

Гипотеза Максвелла была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла)



 
Статьи по теме:
Как пьянеют разные знаки зодиака Как бухают знаки зодиака
Невероятные факты Всегда интересно узнать, что знак зодиака может рассказать о характере человека. Еще более занимательно наблюдать за тем, как разные знаки Зодиака общаются друг с другом в различных ситуациях. Всем известно, что алкоголь действует
Педагогический проект «Знакомим детей с творчеством татарского поэта Габдуллы Тукая
муниципальное бюджетное дошкольное образовательное учреждение «Детский сад комбинированного вида № 5» г. Лениногорска муниципального образования «Лениногорский муниципальный район» Республики Татарстан Проект « Эш беткәч уйнарга ярый » Воспитатели: Гумаро
Боевые катера черноморского флота россии
Ракетные катера проекта 12411 предназначены для уничтожения боевых надводных кораблей противника, транспортных и десантных средств и судов в море, пунктах базирования, морских группировок и их прикрытия, а также для прикрытия дружественных кораблей и судо
Целочисленные оптимизационные задачи
Задачи на оптимальный выбор1. В 1­е классы поступает 45 человек: 20 мальчиков и 25 девочек. Их распределили по двум классам: в одном должно получиться 22 человека, а в другом пределенияпосчитали процент девочек в каждом классе и полученные числа сложили.