Структурно механический фактор устойчивости заключается в. Структурно-механические факторы устойчивости. Белки и нуклеиновые кислоты

Различают термодинамические и кинетические факторы устойчивости,

К термодинамическим факторам относятся электростатический, адсорбционно-соль­ват­ный и энтропийный факторы.

Электростатический фактор обусловлен существованием на поверхности частиц дисперсной фазы двойного электрического слоя. Главные составляющие электростатического фактора - это одноимённый заряд гранул всех коллоидных частиц, значение электрокинетического потенциала, а также уменьшение межфазного поверхностного натяжения вследствие адсорбции электролитов (особенно в тех случаях, когда электролитами являются ионогенные ПАВ).

Одноимённый электрический заряд гранул приводит к взаимному отталкиванию сближающихся коллоидных частиц. Причём на расстояниях, превышающих диаметр мицелл, электростатическое отталкивание обусловлено, главным образом зарядом противоионов диффузного слоя. Если же быстро движущиеся частицы сталкиваются друг с другом, то противоионы диффузного слоя, будучи относительно слабо связанными с частицами, могут сместиться, и в результате соприкоснутся гранулы. При этом главную роль в силах отталкивания играет электрокинетический потенциал. А именно, если его значение превышает 70 – 80 мВ, то налетающие друг на друга в результате броуновского движения частицы не смогут преодолеть электростатический барьер и, столкнувшись, разойдутся и агрегации не произойдёт. О роли поверхностного натяжения, как термодинамического фактора устойчивости, говорилось в главе 1.

Адсорбционно-сольватный фактор связан с гидратацией (сольватацией) как самих частиц дисперсной фазы, так и адсорбированных на их поверхности ионов или незаряженных молекул ПАВ. Гидратные оболочки и адсорбционные слои связаны с поверхностью частиц силами адгезии. Поэтому для непосредственного соприкосновения агрегатов сталкивающиеся частицы должны обладать энергией, необходимой не только для преодоления электростатического барьера, но и превышающей работу адгезии.

Энтропийный фактор заключается в стремлении дисперсной фазы к равномерному распределению частиц дисперсной фазы по объёму системы в результате диффузии. Этот фактор проявляется, главным образом, в ультрамикрогетерогенных системах, частицы которых участвуют в интенсивном броуновском движении.

К кинетическим факторам устойчивости относятся структурно-механи­ческий и гидродинамический факторы.

Структурно-механический фактор связан с тем, что существующие на поверхности частиц гидратные (сольватные) оболочки обладают повышенной вязкостью и упругостью. Это создаёт дополнительное отталкивающее усилие при столкновении частиц – так называемое расклинивающее давление . В расклинивающее давление вносит вклад также и упругость самих адсорбционных слоёв. Учение о расклинивающем давлении было разработано Б. В. Дерягиным (1935).



Гидродинамический фактор связан с вязкостью дисперсионной среды. Он снижает скорость разрушения системы благодаря замедлению движения частиц в среде с большой вязкостью. Наименее выражен этот фактор в системах с газовой средой, а наибольшее его проявление наблюдается в системах с твёрдой средой, где частицы дисперсной фазы вообще лишены подвижности.

В реальных условиях устойчивость дисперсных систем обычно обеспечивается несколькими факторами одновременно. Наиболее высокая устойчивость наблюдается при совместном действии и термодинамических, и кинетических факторов.

Каждому фактору устойчивости соответствует специфический метод его нейтрализации. Например, действие структурно-механического фактора можно снять с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц. Сольватация может быть уменьшена или вовсе исключена лиофобизацией частиц дисперсной фазы при адсорбции соответствующих веществ. Действие электростатического фактора значительно снижается при введении в систему электролитов, сжимающих ДЭС. Этот последний случай наиболее важен как при стабилизации, так и при разрушении дисперсных систем.

Коагуляция

Как уже говорилось выше, в основе коагуляции лежит нарушение агрегативной устойчивости системы, приводящее к слипанию частиц дисперсной фазы при их столкновениях. Внешне коагуляция коллоидных растворов проявляется в виде помутнения, иногда сопровождающегося изменением цвета, с последующим выпадением осадка.



В образующихся при коагуляции агрегатах первичные частицы связаны друг с другом или через прослойку дисперсионной среды, или непосредственно. В зависимости от этого агрегаты могут быть или рыхлыми, легко подающимися пептизации, или достаточно прочными, часто необратимыми, которые пептизируются с трудом или вообще не пептизируются. В системах с жидкой дисперсионной средой, особенно при большой концентрации частиц дисперсной фазы, выпадение образующихся агрегатов в осадок часто сопровождается структурообразованием – образованием коагеля или геля, охватывающего весь объём системы.

Первой стадией коагуляции золя при нарушении его устойчивости является скрытая коагуляция , которая заключается в объединении лишь незначительного числа частиц. Скрытая коагуляция обычно не фиксируется невооружённым глазом и может быть отмечена лишь при специальном исследовании, например, с помощью ультрамикроскопа. Вслед за скрытой коагуляцией наступает явная , когда объединяется уже настолько значительное количество частиц, что это приводит к хорошо заметным изменению цвета, помутнению золя и выпадению из него рыхлого осадка (коагулята ). Возникающие в результате потери агрегативной устойчивости коагуляты представляют собой оседающие (или всплывающие) образования различной структуры - плотные, творожистые, хлопьевидные, волокнистые, кристаллоподобные. Структура и прочность коагулятов в значительной степени определяется степенью сольватации (гидратации) и присутствием на частицах адсорбированных веществ различной природы, в том числе ПАВ.

П. А. Ребиндером было подробно изучено поведение золей при коагуляции с не полностью снятыми защитными факторами и показано, что в таких случаях наблюдается коагуляционное структурообразование, приводящие к появлению гелеобразных систем (строение которых будет рассмотрено в главе 11).

Процесс, обратный коагуляции, называется пептизацией(см. п. 4.2.3). В ультрамикрогетерогенных системах, в которых энергия броуновского движения соизмерима с энергией связи частиц в агрегатах (флокулах), между коагуляцией и пептизацией может устанавливаться динамическое равновесие. Оно должно отвечать условию

½ zE = kT ln (V з /V к),

где z – координационное число частицы в пространственной структуре коагулята (иначе, - число контактов одной частицы в образующемся агрегате с другими частицами, входящими в него), E – энергия связи между частицами, находящимися в контакте, k – константа Больцмана, T – абсолютная температура, V з – объём, приходящийся на одну частицу в коллоидном растворе, после образования коагулята (если концентрация частиц при этом равна n частиц/м 3 , то V з = 1/n ,), V к – эффективный объём, приходящийся на одну частицу внутри коагуляционной структуры (или объём, в котором она колеблется относительно положения равновесия).

В лиофобных дисперсных системах после коагуляции концентрация частиц в равновесном золе обычно пренебрежимо мала по сравнению с их концентрацией. Поэтому в соответствии с вышеприведённым уравнением коагуляция является, как правило, необратимой. В лиофильных системах значения энергии связи между частицами невелики и поэтому

½ zE < kT ln (V з /V к),

то есть коагуляция или невозможна, или в высокой степени обратима.

Причины, вызывающие коагуляцию, могут быть самыми различными. Это и механические воздействия (перемешивание, вибрация, встряхивание), и температурные (нагревание, кипячение, охлаждение, замораживание), и другие, часто трудно объяснимые и непредсказуемые.

Но наиболее важной в практическом отношении и вместе с тем наиболее хорошо изученной является коагуляция под действием электролитов или электролитная коагуляция.

В данном разделе обсуждаются явления и процессы, обусловленные агрегативной устойчивостью дисперсных систем.

Прежде всего отметим, что все дисперсные системы в зависимости от механизма процесса их образования по классификации П.А.Ребиндера подразделяют на лиофильные, которые получаются при самопроизвольном диспергировании одной из фаз (самопроизвольное образование гетерогенной свободнодисперсной системы), и лиофобные, получающиеся в результате диспергирования и конденсации (принудительное образование гетерогенной свободнодисперсной системы).

Лиофобные системы по определению должны обладать избытком поверхностной энергии, если она не скомпенсирована введением стабилизаторов. Поэтому в них самопроизвольно идут процессы укрупнения частиц, т.е. происходит снижение поверхностной энергии за счет уменьшения удельной поверхности. Такие системы называют агрегативно неустойчивыми.

Укрупнение частиц может идти разными путями. Один из них, называемый изотермической перегонкой , заключается в переносе вещества от мелких частиц к крупным (эффект Кельвина). В результате мелкие частицы постепенно растворяются (испаряются), а крупные - растут.

Второй путь, наиболее характерный и общий для дисперсных систем, представляет собой коагуляцию (от лат, свертывание, затвердение), заключающуюся в слипании частиц.

Коагуляция в разбавленных системах также приводит к потере седиментационной устойчивости и в конечном итоге к расслоению (разделению) фаз.

Процесс слияния частиц получилназвание коалесценции .

В концентрированных системах коагуляция может проявляться в образовании объемной структуры, в которой равномерно распределена дисперсионная среда. В соответствии с двумя разными результатами коагуляции различаются и методы наблюдения этого процесса. Укрупнение частиц ведет, например, к увеличению мутности раствора, уменьшению осмотического давления. Структурообразование изменяет реологические свойства системы, возрастает ее вязкость, замедляется течение.

Устойчивая свободнодисперсная система, в которой дисперсная фаза равномерно распределена по всему объему, может образоваться в результате конденсации из истинного раствора. Потеря агрегативной устойчивости приводит к коагуляции, первый этап которой состоит в сближении частиц дисперсной фазы и взаимной их фиксации на небольших расстояниях друг от друга. Между частицами остается прослойка среды.

Обратный процесс образования устойчивой свободнодисперсной системы из осадка или геля (структурированной дисперсной системы) называется пептизацией.

Более глубокий процесс коагуляции приводит к разрушению прослоек среды и непосредственному контакту частиц. В итоге или образуются жесткие агрегаты из твердых частиц, или происходит полное слияние их в системах с жидкой или газообразной дисперсной фазой (коалесценция). В концентрированных системах образуются жесткие объемные твердообразные структуры, которые снова можно превратить в свободнодисперсную систему только с помощью принудительного диспергирования. Таким образом, понятие коагуляции включает в себя несколько процессов, идущих с уменьшением удельной поверхности системы.

Рис.33. Процессы, вызывающие потерю устойчивости дисперсных систем.

Агрегативная устойчивость нестабилизированных лиофобных дисперсных систем носит кинетический характер, и судить о ней можно по скорости процессов, вызываемых избытком поверхностной энергии.

Скорость коагуляции определяет агрегативную устойчивость дисперсной системы, для которой характерен процесс слипания (слияния) частиц.

Агрегативная устойчивость может носить и термодинамический характер, если дисперсная система не обладает избытком поверхностной энергии. Лиофильные системы термодинамически агрегативно устойчивы, они образуются самопроизвольно и для них процесс коагуляции вообще не характерен.

Лиофобные стабилизированные системы термодинамически устойчивы к коагуляции; они могут быть выведены из такого состояния с помощью воздействий, приводящих к избытку поверхностной энергии (нарушение стабилизации).

В соответствии с вышеизложенной классификацией различают термодинамические и кинетические факторы агрегативной устойчивости дисперсных систем. Так как движущей силой коагуляции является избыточная поверхностная энергия, то основными факторами, обеспечивающими устойчивость дисперсных систем (при сохранении размера поверхности), будут те, которые снижают поверхностное натяжение. Эти факторы относят к термодинамическим. Они уменьшают вероятность эффективных соударений между частицами, создают потенциальные барьеры, замедляющие или даже исключающие процесс коагуляции. Чем меньше поверхностное натяжение, тем ближе система к термодинамически устойчивой.

Скорость коагуляции, кроме того, зависит и от кинетических факторов.

Кинетические факторы, снижающие скорость коагуляции, связаны в основном с гидродинамическими свойствами среды: с замедлением сближения частиц, вытекания и разрушения прослоек среды между ними.

Различают следующие термодинамические и кинетические факторы устойчивости дисперсных систем.

1.Электростатический фактор заключается в уменьшении межфазного натяжения вследствие формирования двойного электрического слоя на поверхности частиц, а также в кулоновском отталкивании, возникающем при их сближении.

Двойной электрический слой (ДЭС) образуется при адсорбции ионогенных (диссоциирующих на ионы) ПАВ. Адсорбция ионогенного ПАВ может происходить на границе двух несмешивающихся жидкостей, например воды и бензола. Полярная группа молекулы ПАВ, обращенная к воде, диссоциирует, сообщая поверхности бензольной фазы заряд, соответствующий органической части молекул ПАВ (потенциалопределяющих ионов). Противоионы (неорганические ионы) формируют двойной слой со стороны водной фазы, так как сильнее с ней взаимодействуют.

Существуют и другие механизмы образования двойного электрического слоя. Например, ДЭС образуется на межфазной поверхности между водой и малорастворимым иодидом серебра. Если в воду добавить хорошо растворимый нитрат серебра, то образующиеся в результате диссоциации ионы серебра могут достраивать кристаллическую решетку AgI, т.к. они входят в ее состав (специфическая адсорбция ионов серебра). Вследствие этого поверхность соли заряжается положительно (избыток катионов серебра), а иодид-ионы будут выступать в качестве противоионов.

Следует также упомянуть о возможности образования двойного электрического слоя в результате перехода ионов или электронов из одной фазы в другую (поверхностная ионизация).

ДЭС, образующийся в результате описанных выше процессов пространственного разделения зарядов, имеет размытый (диффузный) характер, что обусловлено одновременным влиянием на его строение электростатического (кулоновского) и ван-дер-ваальсовского взаимодействия, а также теплового движения ионов и молекул.

Так называемые электрокинетические явления (электрофорез, электроосмос и др.) обусловлены наличием двойного электрического слоя на границе раздела фаз.

2. Адсорбционно-сольватный фактор состоит в уменьшении межфазного

натяжения при введении поверхностно-активных веществ (благодаря адсорбции и сольватации).

3. Энтропийный фактор, как и первые два, относится к термодинамическим. Он дополняет первые два фактора и действует в системах, в которых частицы участвуют в тепловом движении. Энтропийное отталкивание частиц можно представить как наличие постоянной диффузии частиц из области с большей концентрацией в область с меньшей концентрацией, т.е. система постоянно стремится к выравниванию по всему объему концентрации дисперсной фазы.

4. Структурно-механический фактор является кинетическим. Его действие обусловлено тем, что на поверхности частиц могут образовываться пленки, обладающие упругостью и механической прочностью, разрушение которых требует затрат энергии и времени.

5. Гидродинамический фактор снижает скорость коагуляции благодаря изменению вязкости и плотности дисперсионной среды в тонких прослойках жидкости между частицами дисперсной фазы.

Обычно агрегативная устойчивость обеспечивается несколькими факторами одновременно. Особенно высокая устойчивость наблюдается при совместном действии термодинамических и кинетических факторов.

Структурно-механический барьер, рассмотренный впервые П.А.Ребиндером, - это сильный фактор стабилизации, связанный с образованием на границах раздела фаз адсорбционных слоев, лиофилизующих поверхность. Структура и механические свойства таких слоев способны обеспечить весьма высокую устойчивость прослоек дисперсионной среды между частицами дисперсной фазы.

Структурно-механический барьер возникает при адсорбции молекул ПАВ, которые способны к образованию гелеобразного структурированного слоя на межфазной границе, хотя, возможно, и не обладают высокой поверхностной активностью по отношению к данной границе раздела фаз. К таким веществам относятся смолы, производные целлюлозы, белки и другие так называемые защитные коллоиды, являющиеся высокомолекулярными веществами.

В большинстве д.с. самопроизвольно идут процессы укрупнения частиц д. фазы из-за стремления уменьшить избыточную поверхностную энергию. Укрупнение частиц может идти двумя путями:

1.изотермическая перегонка – перенос вещества от мелких частиц к более крупным (↓G). Движущая сила – разность μ частиц различного размера

2.коагуляция – слипание, слияние частиц д. фазы.

Коагуляция в узком смысле – это слипание частиц, а в широком смысле – потеря агрегативной устойчивости. Для характеристики слипания частиц часто используют термин «коалесценция».

Коагуляция ведет к седиментационной неустойчивости или увеличивает скорость ее протекания.

В концентрированных растворах коагуляция может приводить к образованию объемных структур в системе. Коагуляция включает несколько последовательных стадий:

Образование флоккул (агрегатов частиц), разделенных прослойками среды – флокуляция. Обратный процесс называется пептизация (из флоккул → частицы)

Разрушение прослоек, слияние частиц или образование жестких конденсационных структур.

Все эти процессы идут с ↓G. Коагуляция зависит от термодинамических и кинетических факторов.

А . – Термодинамические факторы устойчивости:

1)электростатический – заключается в ↓σ, вследствие образования на межфазной поверхности ДЭС.

2)адсорбционно-сольватный – заключается в ↓σ, вследствие адсорбции (уравнение Гиббса) и адгезии (Дюпре).

3)энтропийный – заключается в стремлении системы к равномерному распределению частиц. Действует в системах с броуновским движением.

Б. – Кинетические факторы устойчивости – способствуют уменьшению скорости коагуляции.

1)структурно-механический – заключается в необходимости приложения энергии и времени для разрушения пленки среды из-за ее определенной упругости и прочности.

2)гидродинамический – заключается в уменьшении скорости коагуляции за счет увеличения η и ∆ρ.

В. – Смешанные факторы устойчивости – заключаются в возникновении синергетического эффекта, т.е. одновременного влияния нескольких выше указанных факторов и их усилении (↓σ изменяет механические свойства пленки среды).

Для каждого фактора устойчивости при необходимости может быть предложен специфический метод его нейтрализации

Введение электролитов уменьшает электростатический фактор

Введение ПАВ изменяет механическую прочность прослоек

В основе т.д. агрегативной устойчивости лежит представление о расклинивающем давлении, введенным Б. Деряминым в 1935. Оно возникает при сильном ↓d пленки, при взаимодействии сближающихся поверхностных слоев частиц. Поверхностные слои начинают перекрываться. Расклинивающее давление – суммарный параметр, учитывающий силы притяжения (Ван-дер-Вальса) и силы отталкивания – имеют различную природу.

Уменьшение d пленки приводит к исчезновению в ней молекул среды с min энергией, т.к. находящиеся в ней частицы увеличивают свою избыточную энергию в связи с потерей соседей или сольватных оболочек. В результате молекулы в прослойке стремятся втянуть в нее другие молекулы из объема, возникает как бы расклинивающее давление. Его физический смысл – это давление, которое нужно приложить к пленке, чтобы сохранить равновесную толщину.

Современная теория устойчивости дисперсных систем носит название ДЛФО (Дерябина-Ландау-Фервея-Обербека). В ее основе общая энергия взаимодействия частиц, определяется как алгебраическая сумма энергий молекулярного притяжения и электростатического отталкивания

Давление отталкивания определяется только электростатическими силами. Однако, к настоящему времени общей теории агрегативной устойчивости и коагуляции пока не создано.

Кинетика коагуляции.

Скорость коагуляции является основным фактором, по которому судят об агрегативной устойчивости, может изменяться в широких пределах.

Количественная теория была развита в трудах М. Смолуховского, Г. Мюллера, Н. Фукса. Наиболее разработанной и одной из первых была теория Смолуховского:

Для монодисперсных золей со сферическими частицами

Столкновение частиц – результат броуновского движения

Критическое расстояние при взаимодействии d=2r

Столкновение только 2 частиц (одинарная с одинарной, одинарная с двойной, двойная с тройной).

Такое представление позволило свести коагуляцию к теории бимолекулярной хим. реакции. В результате скорость коагуляции может быть найдена:

;

P – стерический фактор

Суммарное число r

Д – коэффициент диффузии

После интегрирования в пределах от при τ=0 до ν τ при τ:

к – определить трудно, поэтому Смолуховским было введено понятие времени половинной коагуляции – времени, в течении которого число частиц уменьшается в 2 раза ().

Приравняв эти уравнения, получим:

, ;

Решение кинетических уравнений коагуляции можно проводить графически.

Факторы агрегативной устойчивости коллоидных систем. Виды коагуляции коллоидных систем

Основным методом очистки природных и сточных вод от мелкодисперсных, эмульгированных, коллоидных и окрашенных примесей (1 и 2 группы) является коагуляция и флокуляция. Методы основаны на агрегировании частиц дисперсной фазы с последующим их удалением из воды механическим отстаиванием.

Эффективность и экономичность процессов коагуляционной очистки сточных вод определяется устойчивостью дисперсной системы, которая зависит от ряда факторов: степени дисперсности, характера поверхности частиц, плотности частиц, величины электрокинœетического потенциала, концентрации, наличия в сточной воде других примесей, к примеру, электролитов, высокомолекулярных соединœений.

Существуют различные способы проведения коагуляции, целœесообразность применения которых зависит от факторов предопределяющих агрегативную устойчивость систем.

Агрегативная устойчивость коллоидных систем зависит от их строения.

Обладая большой удельной поверхностью, коллоидные частицы способны адсорбировать из воды ионы, вследствие чего соприкасающиеся фазы приобретают заряды противоположного знака, но равные по величинœе. В результате на поверхности возникает двойной электрический слой. Ионы относительно прочно связанные с дисперсной твердой фазой называют потенциалопределяющими . Οʜᴎ нейтрализуются избытком противоионов . Толщина двойного слоя в водных растворах не превышает 0,002 мм.

Степень адсорбции ионов зависит от сродства адсорбируемых ионов к поверхности, их способности образовывать недиссоциируемые поверхностные соединœения. При адсорбции ионов одинаковой валентности адсорбционная способность повышается с увеличением радиуса иона и, соответственно, его поляризуемости, ᴛ.ᴇ. способности притягиваться к поверхности коллоидной частицы. Увеличение радиуса иона сопровождается также уменьшением его гидратации, наличие плотной гидратной оболочки препятствует адсорбции, т.к. уменьшает электрическое взаимодействие иона с поверхностью коллоидной частицы.

Согласно современным представлениям о строении двойного электрического слоя слой противоинов состоит из двух частей. Одна часть примыкает к межфазной поверхности и образует адсорбционный слой, толщина которого равна радиусу составляющих его гидратированных ионов. Другая часть противоионов находится в диффузном слое, толщина которого зависит от свойств и состава системы. В целом мицелла электронейтральна. Строение мицеллы – коллоидной частицы – представлено на рис.1.1.

Разность потенциалов между потенциалопределяющими ионами и всœеми противоионами принято называть термодинамическим φ-потенциалом.

Заряд на частицах препятствует их сближению, чем, в частности, и определяется устойчивость коллоидной системы. В целом устойчивость коллоидных систем обусловлена наличием заряда у гранулы, диффузионного слоя и гидратной оболочки.

Рис.3.1. Строение мицеллы: Рис.3.2. Схема двойного электрического

I – ядро мицеллы; слоя в электрическом поле

II – адсорбционный слой; (I-II – гранула);

III – диффузионный слой;

IV – гидратная оболочка

При движении частицы в дисперсной системе или при наложении электрического поля часть противоионов диффузного слоя остается в дисперсной среде и гранула приобретает заряд, соответствующий заряду потенциалопределяющих ионов. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, дисперсионная среда и дисперсная фаза оказываются противоположно заряженными.

Разность потенциалов между адсорбционным и диффузным слоями противоионов принято называть электрокинœетическимζ – потенциалом (рис. 1.2).

Электрокинœетический потенциал является одним из важнейших параметров двойного электрического слоя. Величина ζ – потенциала обычно составляет единицы и десятки милливольт исходя из состава фаз и концентрации электролита. Чем больше величина ζ– потенциала, тем более устойчива частица.

Рассмотрим термодинамические и кинœетические факторы устойчивости дисперсных систем:

· Электростатический фактор устойчивости . С позиции физической кинœетики молекулярное притяжение частиц является основной причиной коагуляции системы (ее агрегативной неустойчивости). В случае если на коллоидных частицах образовался адсорбционный слой, имеющий ионную природу, то при достаточном сближении одноименно заряженных частиц возникают электростатические силы отталкивания. Чем толще двойной электрический слой, тем интенсивнее результирующая сила отталкивание частиц, тем больше высота энергетического барьера и тем меньше вероятность слипания частиц. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, устойчивость коллоидных систем в присутствии ионного стабилизатора зависит от свойств двойного электрического слоя.

· Сольватационный фактор устойчивости . Силы отталкивания бывают вызваны существованием на поверхности сближающихся частиц сольватных (гидратных) оболочек или так называемых граничных фаз, состоящих лишь из молекул дисперсионной среды и обладающих особыми физическими свойствами. Ядро мицеллы нерастворимо в воде, следовательно, и не гидратировано. Ионы, адсорбированные на поверхности ядра, и противоионы двойного электрического слоя гидратированы. Благодаря этому вокруг ядра создается ионно-гидратная оболочка. Толщина ее зависит от распределœения двойного электрического слоя: чем больше ионов находится в диффузном слое, тем больше и толщина гидратной оболочки.

· Энтропийный фактор устойчивости. Обусловлен тепловым движением сегментов молекул ПАВ, адсорбированных на коллоидных частицах. При сближении частиц, имеющих адсорбционные слои из молекул ПАВ или высокомолекулярных веществ, происходит сильное уменьшение энтропии адсорбционного слоя, что препятствует агрегированию частиц.

· Структурно-механический фактор устойчивости. Адсорбционно-сольватные слои ПАВ могут представлять собой структурно-механический барьер, препятствующий сближению частиц. Защитные слои противоионов-стабилизаторов, являясь гелœеобразными, обладают повышенной структурной вязкостью и механической прочностью.

· Гидродинамический фактор устойчивости . Скорость коагуляции может снижаться благодаря изменению вязкости среды и плотности дисперсной фазы и дисперсионной среды.

· Смешанные факторы наиболее характерны для реальных систем. Обычно агрегативная устойчивость обеспечивается несколькими факторами одновременно. Особенно высокая устойчивость наблюдается при совокупности действия термодинамических и кинœетических факторов, когда наряду со снижением межфазного натяжения проявляются структурно-механические свойства межчастичных прослоек.

Необходимо иметь в виду, что каждому фактору устойчивости соответствует специфический метод его нейтрализации. К примеру, действие электростатического фактора значительно снижается при введении в систему электролитов, которые сжимают двойной электрический слой.

Сольватация при сольватационном факторе должна быть исключена лиофобизацией частиц дисперсной фазы с помощью адсорбции соответствующих веществ. Действие структурно-механического фактора можно снизить с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц.

Дестабилизация системы должна быть вызвана различными причинами, результатом многих из них является сжатие диффузного слоя, а следовательно, и уменьшение значения ζ-потенциала. Сжатие диффузного слоя уменьшает и степень гидратации ионов, в изоэлектрическом состоянии (ζ= 0, мВ) гидратная оболочка вокруг ядра предельно тонка (10 -10 м) и не защищает мицеллы от слипания при столкновении, в результате начинается агрегация частиц.

Седиментационная устойчивость коллоидных систем (СУ) – способность дисперсной системы сохранять равномерное распределœение частиц по всœему объёму) обусловлена броуновским движением коллоидных дисперсий и диффузией частиц дисперсной фазы.

Седиментационная устойчивость системы зависит от действия двух факторов, направленных взаимно противоположно: силы тяжести, под действием которой частицы осœедают, и диффузии, при которой частицы стремятся к равномерному распределœению по объёму. В результате возникает равновесное диффузионно-седиментационное распределœение частиц по высоте, зависящее от их размера.

Диффузия замедляется с увеличением размера частиц. При достаточно высокой степени дисперсности частиц броуновское движение, как движение диффузионное, приводит к выравниванию концентраций по всœему объёму. Чем меньше частицы, тем больший срок требуется для установления равновесия.

Скорость осœедания частиц пропорциональна квадрату их диаметра. В грубодисперсных системах скорость достижения равновесия сравнительно большая и равновесие устанавливается в течение нескольких минут или часов. В тонкодисперсных растворах она мала, и до момента равновесия проходят годы или даже десятки лет.

Виды коагуляции

В современной теории коагуляции дисперсных систем разработанной Дерягиным, Ландау, Фервеем, Овербеком (теория ДЛФО) степень устойчивости системы определяется из баланса молекулярных и электростатических сил. Различают два типа коагуляции:

1) концентрационную, при которой потеря устойчивости частиц связана со сжатием двойного слоя;

2) нейтрализационную (коагуляция электролитами), когда наряду со сжатием двойного слоя уменьшается потенциал φ 1 .

Концентрационная коагуляция характерна для сильно заряженных частиц в высококонцентрированных растворах электролитов. Чем выше потенциала φ 1 ДЭС, тем сильнее противоионы притягиваются к поверхности частиц и своим присутствием экранируют рост электрического поля. По этой причине при высоких значениях φ 1 силы электростатического отталкивания между частицами не возрастают безгранично, а стремятся к некоторому конечному пределу. Этот предел достигается при φ 1 более 250 мв. Отсюда следует, что взаимодействие частиц с высоким φ 1 -потенциалом не зависит от величины этого потенциала, а определяется только концентрацией и зарядом противоионов.

По мере увеличения концентрации электролита величина ζ – потенциала (ДП) снижается, а φ 1 практически сохраняет свое значение (рис. 3.3).

Рис. 3.3. а) Взаимосвязь между φ-потенциалом и ДП (ζ – потенциал) для сильно заряженной частицы (концентрационная коагуляция);

б) Взаимосвязь между φ-потенциалом и ДП для слабо заряженной частицы (нейтрализационная коагуляция).

Чтобы вызвать коагуляцию золя, крайне важно превысить некоторую максимальную концентрацию ионов – коагулянтов – порог коагуляции.

Теория ДЛФО дает возможность определить величину порога концентрационной коагуляции (γ):

Где Ск - константа͵ слабо зависящая от отношения зарядов катиона и аниона электролита; ε- диэлектрическая проницаемость раствора; А - константа͵ характеризующая молекулярное притяжение частиц; е - заряд электрона; z i - валентность противоиона.

Из уравнения (1.1.) видно, что порог коагуляции не зависит от φ 1 , и обратно пропорционален шестой степени валентности противоионов. Для одно-, двух-, трех- и четырехвалентных ионов соотношение порогов коагуляции будет равно

Нейтрализационная коагуляция характерна для слабо заряженных частиц. Потеря агрегативной устойчивости обусловлена адсорбцией противоионов и снижением потенциала диффузного слоя φ 1.

При невысоких концентрациях электролита͵ когда толщина диффузного слоя велика, значения φ 1 и ζ – потенциала близки (рис.3.3.).По этой причине значение ζ – потенциала при нейтрализационной коагуляции достаточно надежно характеризует степень устойчивости золя.

Согласно теории Дерягина, критическая величина потенциала () связана с условиями нейтрализационной коагуляции соотношением

где С н - константа; А χ - величина, обратная толщинœе диффузного слоя.

3) Коагуляция должна быть вызвана прибавлением в систему электролитов и под воздействием физико-химических факторов (перемешивание системы, нагревание, замораживание с последующим оттаиванием, воздействие магнитного или электрического полей, ультрацентрифугирование, ультразвуковое воздействие и др.).

Факторы агрегативной устойчивости коллоидных систем. Виды коагуляции коллоидных систем - понятие и виды. Классификация и особенности категории "Факторы агрегативной устойчивости коллоидных систем. Виды коагуляции коллоидных систем" 2017, 2018.

термодинамические кинетические

(↓ ).(↓скорости коагуляции из-за гидродинамических свойств среды)

а) электростатический фактор – ↓ из-за а) гидродинамический фактор

образования ДЭС

б) адсорбционно-сольватный фактор - ↓ б)структурно- механический

из-за адсорбции и сольватации поверхности фактор

в) энтропийный фактор

Термодинамические факторы:

Электростатический фактор способствует созданию электростатических сил отталкивания, возрастающих при увеличении поверхностного потенциала частиц, и особенно ζ- потенциала.

Адсорбционно-сольватный фактор обусловлен уменьшением в результате сольватации поверхности частиц. Поверхность частиц при этом лифильна по своей природе или из-за адсорбции стабилизаторов-неэлектролитов. Такие системы могут быть агрегативно устойчивыми даже при отсутствии потенциала на поверхности частиц.

Лиофилизовать лиофобные системы можно, адсорбировав на их поверхности молекулы, с которыми их среда взаимодействует. Это ПАВ, ВМС, и в случае эмульсий – тонкодисперсные порошки, смачиваемые средой.

Адсорбция таких веществ сопровождается сольватацией и ориентацией молекул в согласии с полярностью контактирующих фаз (правило Ребиндера). Адсорбция ПАВ приводит к снижению поверхностной энергии Гиббса и тем самым - к повышению термодинамической устойчивости системы

Энтропийный фактор особую роль играет в системах с частицами малых размеров, так как вследствие броуновского движения частицы дисперсной фазы равномерно распределяются по объёму системы. В результате повышается хаотичность системы (хаотичность её меньше, если частицы находятся в виде осадка на дне сосуда), как следствие, возрастает и её энтропия. Это приводит к увеличению термодинамической устойчивости системы, достигаемой за счёт снижения общей энергии Гиббса. Действительно, если в ходе какого-либо процесса S > 0, то согласно уравнению

G = H - TS,

такой процесс идет с уменьшением энергии Гиббса G <0.

Кинетические факторы:

Структурно-механический фактор устойчивости возникает при адсорбции ПАВ и ВМС на поверхности частиц, которые приводят к образованию адсорбционных слоев, обладающих повышенными структурно-механическими свойствами. К таким веществам относятся: длинноцепочечные ПАВ, большинство ВМС, например, желатин, казеин, белки, мыла, смолы. Концентрируясь на поверхности частиц, они могут образовывать гелеобразную пленку.Эти адсорбционные слои являются как бы барьером на пути сближения частиц и их агрегации.

Одновременное снижение поверхностного натяжения в этом случае приводит к тому, что этот фактор становится универсальным для стабилизации всех дисперсных систем.

Гидродинамический фактор устойчивости проявляется в сильновязких и плотных дисперсионных средах, в которых скорость движения частиц дисперсной фазы мала и их кинетической энергии недостаточно, чтобы преодолеть даже малый потенциальный барьер отталкивания.

В реальных коллоидных системах обычно действует сразу несколько термодинамических и кинетических факторов устойчивости. Например, устойчивость мицелл полистирольного латекса (см. главу 5) обеспечивается ионным, структурно-механическим и адсорбционно-сольватным факторами устойчивости.

Следует отметить, что каждому фактору устойчивости соответствует свой специфический метод его нейтрализации. Например, действие ионного фактора значительно снижается при введении электролитов. Действие структурно-механического фактора можно предотвратить с помощью веществ – т.н. деэмульгаторов (это – обычно короткоцепочечные ПАВ), разжижающих упругие структурированные слои на поверхности частиц, а также механическим, термическим и другими способами. В результате происходит потеря агрегативной устойчивости систем и коагуляция .

Механизмы действия стабилизаторов

Стабилизаторы создают на пути слипания частиц потенциальный или структурно-механический барьер и при его достаточной высоте термодинамически неустойчивая система может существовать достаточно долго по чисто кинетическим причинам, находясь в метастабильном состоянии.

Рассмотрим более подробно электростатический фактор устойчивости или ионный фактор стабилизации дисперсных систем.



 
Статьи по теме:
Чистка биополя человека от психических атак
Очищение ауры следует также отнести к оздоровительным духовным практикам. Эта услуга часто предлагается по непомерно высоким ценам практикующими магами или парапсихологами, но на самом деле очищение ауры является очень простым ритуалом, который выполняет
Свадхистана чакра за что отвечает и на что воздействует
Здравствуйте, уважаемые гости! Казалось ли вам когда-нибудь, что вам ничего не хочется? Таким состояниям подвержены те люди, у которых заблокирована Свадхистана – центр удовольствий. Некоторые по незнанию связывают ее исключительно с сексом. Это ошибочное
Рунические ставы на все случаи жизни
Издревле люди обращались за помощью к магии , чтобы изменить судьбу к лучшему. Привлечь внимание значимой особы, получить работу или прибыль, стать удачливее и защитить свой дом – эти и другие жизненные вопросы актуальны для всех поколений. За столетия пр
Рунические формулы готовые проверенные на все
Согласно сохранившимся знаниям скальдов, верховный Бог Один, висевший на Древе Иггдрасиль , познал древние символы рун, которые были собраны в футарк. Футарк — это мощный магический инструмент, состоящий из символов, каждый из которых несет свой смысл и с