Аэробный и анаэробный синтез атф. Ресинтез АТВ – основные принципы биохимического спорта. Общие показатели и энергетические возможности протекающих реакций

Схематично процесс ресинтеза АТФ при работе можно выразить следующим уравнением:

АДФ + Н 3 РО 4 + энергия → АТФ + Н 2 О

Фосфорилирование АДФ неорганическим фосфатом в физиологических условиях требует затрат энергии в количестве около 9 ккал/моль АТФ. Нужное количество энергии может освобождаться в процессах двух типов: аэробных, требующих для своего протекания кислорода, и анаэробных, осуществляющих ресинтез АТФ без участия кислорода.

Прежде чем переходить к непосредственной характеристике различных путей ресинтеза АТФ, остановимся на показателях, позволяющих их сравнивать, оценивать возможности, достоинства и недостатки этих процессов. К таким показателям можно отнести максимальную мощность процесса, скорость его развертывания, метаболическую емкость и эффективность.

Максимальная мощность процесса ресинтеза АТФ оценивается наибольшим количеством энергии, которое тот или иной процесс может поставить для обеспечения ресинтеза АТФ в единицу времени (или количеством ресинтезируемой в единицу времени АТФ). Максимальную мощность принято выражать в калориях (кал), килокалориях (ккал), а также джоулях (Дж) или килоджоулях (кДж) в единицу времени (секунду или минуту) в расчете на кг массы тела человека.

Скорость развертывания процесса ресинтеза АТФ оценивается временем от начала работы до момента достижения этим процессом своей максимальной мощности. Она выражается в секундах или минутах.

Метаболическая емкость – суммарное количество энергии, которое может быть освобождено в ходе того или иного процесса и использовано на ресинтез АТФ. Выражается метаболическая емкость в килокалориях или килоДжоулях.

Эффективность процессов энергообеспечения определяется отношением полезно затраченной энергии (на ресинтез АТФ) к общему количеству энергии, освободившейся в ходе данного процесса. Чаще всего эффективность выражается в процентах.

Принято различать термодинамическую, метаболическую и механическую эффективность. Термодинамическая эффективность оценивается той долей энергии, освобождающейся при расщеплении АТФ, которая преобразуется в механическую работу. В соответствии с современными научными данными в механическую работу преобразуется 40-49% (0,4) энергии, освобождающейся при расщеплении АТФ.



Метаболическая эффективность показывает, какая часть освобождающейся в ходе химических превращений энергии, фиксируется в макроэргических фосфатных связях АТФ. В частности, в процессе аэробного окисления углеводов максимальная метаболическая эффективность составляет около 60% (0,6).

Механическая эффективность характеризует способность организма использовать энергию химических связей различных источников для обеспечения мышечной работы. Она рассчитывается как произведение термодинамической и метаболической эффективности. Так, непосредственно в механическую работу преобразуется примерно 25% (0,4 × 0,6 = 0,24) энергии, освобождающейся при аэробном расщеплении углеводов.

Основным процессом, осуществляющим ресинтез АТФ, является аэробное окисление , полностью обеспечивающее энергетические потребности организма в условиях повседневной деятельности. Аэробные превращения характеризуются большой метаболической емкостью. Общее количество энергии, которое может поставить для обеспечения мышечной работы аэробный процесс, многократно превосходит аналогичный показатель анаэробных превращений.

Основными энергетическими субстратами аэробных превращений служат углеводы и жиры, запасы которых в организме человека достаточно велики. Кроме того, в качестве источника энергии могут использоваться продукты белкового обмена. Таким образом, со стороны энергетических субстратов ограничений у аэробных превращений фактически нет. Однако при выполнении объемной, продолжительной мышечной работы могут возникнуть проблемы с доставкой энергетических субстратов к работающим органам и тканям (в первую очередь к мышцам) из депо.

В процессе аэробного окисления в организме не накапливаются промежуточные продукты энергетического обмена. Конечные продукты аэробных превращений (Н 2 О и СО 2) легко устраняются из организма.

Как уже указывалось, аэробный путь ресинтеза АТФ обладает высокой эффективностью. Непосредственно на ресинтез АТФ используется до 60% энергии, освобождающейся в ходе аэробных превращений (при отсутствии разобщения окисления с ресинтезом АТФ).

С другой стороны, аэробное окисление характеризуется низкой по сравнению с анаэробными превращениями скоростью развертывания и ограниченной максимальной мощностью. У нетренированных лиц аэробный ресинтез АТФ достигает своей максимальной интенсивности через 3-4 мин после начала напряженной мышечной работы. Систематическая тренировка сокращает это время. У лиц с высокой степенью тренированности, выполнивших предварительную разминку, аэробный процесс развертывается до максимума уже к концу первой минуты работы или чуть позже. Учитывая, что многие спортивные упражнения по своей продолжительности попадают в зону неполного развертывания аэробных процессов, такую скорость можно рассматривать как недостаточно высокую.

Даже при максимальной мощности аэробных превращений скорость ресинтеза АТФ остается относительно невысокой и не может обеспечить восполнение затрат АТФ при интенсивной работе. При наличии только аэробного механизма энергообеспечения организм не обладал бы способностью быстро переходить от состояния покоя к напряженной работе, быстро повышать мощность по ходу выполнения упражнения, выполнять кратковременные интенсивные упражнения скоростно-силового характера.

Анаэробные процессы ресинтеза АТФ как бы компенсируют недостатки аэробного пути. Они обладают значительно более высокой скоростью развертывания и максимальной мощностью, но существенно уступают аэробному процессу по метаболической емкости.

Существует три основных анаэробных процесса ресинтеза АТФ: креатинфосфокиназная реакция, гликолиз и миокиназная реакция. Во всех трех случаях ресинтез АТФ осуществляется путем взаимодействия АДФ с макроэргическими соединениями либо присутствующими в мышечной ткани (креатинфосфат и АДФ), либо образующимися в процессе анаэробных окислительных превращений углеводов (дифосфоглицериновая и фосфоэнолпировиноградная кислоты).

Рассмотрим последовательно каждый из трех основных анаэробных механизмов ресинтеза АТФ.

АТФ в процессе сокращения поставляет необходимую энергию для образования актомиозинового комплекса, а в процессе расслабления мышцы - обеспечивает энергией активный транспорт ионов кальция в ретикулум. Для поддержания сократительной функции мышцы концентрация АТФ в ней должна находиться на постоянном уровне от 2 до 5 ммоль/кг.

Поэтому при мышечной деятельности аденозинтрифосфорная кислота должна восстанавливаться с той же скоростью, с какой расщепляется в процессе сокращения, что осуществляется отдельными биохимическими механизмами ее ресинтеза.

Энергетические источники ресинтеза АТФ в скелетных мышцах и других тканях - богатые энергией фосфатсодержащие вещества. Они присутствуют в тканях (креатинфосфат, аденозиндифосфат) или образуются в процессе катаболизма гликогена, жирных кислот и других энергетических субстратов. Кроме того, в результате аэробного окисления различных веществ возникают энергии протонного градиента на мембране митохондрий.

Ресинтез аденозинтрифосфата может осуществляться в реакциях без участия кислорода (анаэробные механизмы ) или с его участием (аэробный механизм ). В обычных условиях ресинтез АТФ в мышцах происходит преимущественно аэробным путем. При напряженной физической работе, когда доставка кислорода к мышцам затруднена, включаются и анаэробные механизмы ресинтеза АТФ. В скелетных мышцах человека выявлены три вида анаэробных и один путь аэробного восстановления аденозинтрифосфата.

К анаэробным механизмам относятся креатинфосфокиназный (фосфогенный или алактатный), гликолитический (лактатный) и миокиназный механизмы.

Аэробный механизм ресинтеза АТФ заключается в окислительном фосфорилировании, протекающем в митохондриях, количество которых в скелетных мышцах при аэробных тренировках существенно увеличивается. Энергетическими субстратами аэробного окисления служат: глюкоза, жирные кислоты, частично аминокислоты, а также промежуточные метаболиты гликолиза (молочная кислота) и окисления жирных кислот (кетоновые тела).

Каждый механизм имеет разные энергетические возможности, которые оцениваются по следующим критериям: максимальная мощность, скорость развертывания, метаболическая емкость и эффективность .

Максимальная мощность - это наибольшая скорость образования АТФ в данном метаболическом процессе. Она лимитирует предельную интенсивность работы, выполняемой за счет используемого механизма.

Скорость развертывания - время достижения максимальной мощности данного пути ресинтеза адено-зинтрифосфата от начала работы.

Метаболическая емкость - общее количество АТФ, которое может быть получено в используемом механизме ресинтеза АТФ за счет величины запасов энергетических субстратов. Емкость лимитирует объем выполняемой работы. Метаболическая эффективность - это та часть энергии, которая накапливается в макроэргических связях аденозинт-рифосфата. Она определяет экономичность выполняемой работы и оценивается общим значением коэффициента полезного действия, представляющего отношение всей полезно затраченной энергии к ее общему количеству, выделенному при текущем метаболическом процессе.

Общий коэффициент полезного действия при преобразовании энергии метаболических процессов в механическую работу зависит от двух показателей:

  • эффективности фосфорилирования;
  • эффективности хемомеханического сопряжения (эффективности преобразования АТФ в механическую работу).

Эффективность хемомеханического сопряжения в процессах аэробного и анаэробного метаболизма примерно одинакова и составляет 50%.

Эффективность фосфорилирования наивысшая в алактатном анаэробном процессе - около 80%, и наименьшая в анаэробном гликолизе - в среднем 44%. В аэробном же процессе она составляет примерно 60%.

Таким образом, анаэробные механизмы имеют большую максимальную мощность и эффективность образования АТФ, но короткое время удержания и небольшую емкость, из-за малых запасов энергетических субстратов. Например, максимальная мощность креатинфосфокиназной реакции развивается уже на 0,5-0,7 с интенсивной работы и поддерживается 10-15 с у нетренированных людей идо 25-30 су высокотренированных спортсменов и составляет 3,8 кДж/кг в минуту.

Гликолитический механизм ресинтеза АТФ отличается невысокой эффективностью. Большая часть энергии остается в молекулах образующейся молочной кислоты. Концентрация последней находится в прямой зависимости от мощности и продолжительности работы, и может быть выделена только путем аэробного окисления.

Гликолиз - это основной путь энергообразования в упражнениях субмаксимальной мощности, предельная продолжительность которых составляет от 30 с до 2,5 мин (бег на средние дистанции, плавание на 100 и 200 м и др.).

Гликолитический механизм энергообразования служит биохимической основой специальной скоростной выносливости организма.

Миокиназная реакция происходит в мышцах при значительном увеличении концентрации АДФ в саркоплазме. Такая ситуация возникает при выраженном мышечном утомлении, когда другие пути ресинтеза уже не возможны.

Таким образом, анаэробные механизмы являются основными в энергообеспечении кратковременных упражнений высокой интенсивности .

При адаптации к интенсивным нагрузкам повышается активность ферментов анаэробных механизмов и запасов энергетических механизмов: содержание креатинфосфата в скелетных мышцах может увеличиваться в 1,5-2 раза, а содержание гликогена - почти в 3 раза.

Обновлено: 20 июня 2013 Просмотров: 85079

Анаэробные пути ресинтеза АТФ – это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.

Креатинфосфатный путь связан с веществом креатинфосфатом . Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 – 20 ммоль/кг.

Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой . Данный путь ресинтеза АТФ иногда называют креатикиназным.

Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.

Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. У мужчин выделение креатинина с мочой колеблется в пределах 18-32 мг/сутки . кг массы тела, а у женщин – 10-25 мг/сутки . кг (это иесть криатининовый коэффициент). Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.

Максимальная мощность этого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.

Время развертывания всего 1 – 2 сек.

Время работы с максимальной скоростью всего лишь 8 – 10 сек.

Главным преимуществом креатинфосфатного пути образования АТФ являются:

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.

Креатиновый коэффициент – это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.

Алактатный кислородный долг – это повышение потребления кислорода в ближайшие 4 – 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 – 10 литров.

Гликолитический путь ресинтеза АТФ, так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Максимальная мощность – 750-850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.

Время развертывания 20-30 секунд.

Время работы с максимальной мощностью – 2-3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

    он быстрее выходит на максимальную мощность;

    имеет более высокую величину максимальной мощности;

    не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки :

    процесс малоэкономичен;

    накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

Общий итог гликолиза может быть представлен в виде следующих уравнений:

С 6 Н 12 О 6 + АДФ + 2 Н 3 РО 4 С 3 Н 6 О 3 + 2 АТФ + 2 Н 2 О;

глюкоза молочная кислота

n + 3 АДФ + 3 Н 3 РО 4 С 3 Н 6 О 3 + n _ 1 + 3 АТФ + 2 Н 2 О

гликоген молочная кислота

Схема анаэробного и аэробного гликолиза

Для оценки гликолиза используют две биохимические методики – измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.

Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.

Еще одним важным показателем является лактатный кислородный долг. Лактатный кислородный долг – это повышенное потребление кислорода в ближайшие 1-1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20-22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.

Количественные критерии путей ресинтеза АТФ. Аэробный путь ресинтеза АТФ. Анаэробные пути ресинтеза АТФ. Соотношения между различными путями ресинтеза АТФ при мышечной работе.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Лекция 8. Тема: ЭНЕРГЕТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МЫШЕЧНОГО СОКРАЩЕНИЯ .

Вопросы:

1. Количественные критерии путей ресинтеза АТФ.

4. Соотношения между различными путями ресинтеза АТФ при мышечной работе. Зоны относительной мощности мышечной работы.

Тема : БИОХИМИЧЕСКМЕ СДВИГИ ПРИ МЫШЕЧНОЙ РАБОТЕ.

Вопросы:

1. Основные механизмы нервно-гуморальной регуляции мышечной деятельности.

2. Биохимические изменения в скелетных мышцах.

3. Биохимические сдвиги в головном мозге и миокарде.

4. Биохимические изменения в печени.

5. Биохимические сдвиги в крови.

6. Биохимические сдвиги в моче.

  1. Количественные критерии путей ресинтеза АТФ.

Сокращение и расслабление мышцы нуждаются в энергии, которая образуется при гидролизе молекул АТФ .

Однако запасы АТФ в мышце незначительны, их достаточно для работы мышцы в течении 2 секунд. Образование АТФ в мышцах называется ресинтезом АТФ.

Таким образом, в мышцах идет два параллельных процесса – гидролиз АТФ и ресинтез АТФ.

Ресинтез АТФ в отличие от гидролиза может протекать разными путями, а всего, в зависимости от источника энергии их выделяют три: аэробный (основной), креатинфосфатный и лактатный.

Для количественной характеристики различных путей ресинтеза АТФ обычно используют несколько критериев.

1. Максимальная мощность или максимальная скорость – это наибольшее количество АТФ, которое может образоваться в единицу времени за счет данного пути ресинтеза. Измеряется максимальная мощность в калориях или джоулях, исходя из того что один ммоль АТФ соответствует физиологическим условиям примерно 12 кал или 50 Дж. Поэтому данный критерий имеет размерность кал/мин-кг мышечной ткани или Дж/мин-кг мышечной ткани.

2. Время развертывания – это минимальное время, необходимое для выхода ресинтеза АТФ на свою наибольшую скорость, то есть для достижения максимальной мощности. Этот критерий измеряется в единицах времени.

3. Время сохранения или поддержания максимальной мощности – это наибольшее время функционирования данного пути ресинтеза АТФ с максимальной мощностью.

4. Метаболическая ёмкость – это общее количество АТФ, которое может образоваться во время мышечной работы за счет данного пути ресинтеза АТФ.

В зависимости от потребления кислорода пути ресинтеза делятся на аэробные и анаэробные.

2. Аэробный путь ресинтеза АТФ.

Аэробный путь ресинтеза АТФ иначе называется тканевым дыханием – это основной способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнимаются два атома водорода и по дыхательной цепи передаются на молекулярный кислород, доставляемый в мышцы кровью, в результате чего возникает вода. За счет энергии, выделяющейся при образовании воды, происходит синтез молекул АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез трех молекул АТФ.

Чаще всего водород отнимается от промежуточных продуктов цикла трикарбоновых кислот (ЦТК). ЦТК – это завершающий этап катаболизма в ходе которого происходит окисление ацетилкофермента А до углекислого газа и воды. В ходе этого процесса от перечисленных выше кислот отнимается четыре пары атомов водорода и поэтому образуется 12 молекул АТФ при окислении одной молекулы ацетилкофермента А.

В свою очередь ацетилкофермент А может образовываться из углеводов, жиров аминокислот, то есть через это соединение в ЦТК вовлекаются углеводы, жиры и аминокислоты.

Скорость аэробного обмена АТФ контролируется содержанием в мышечных клетках A ДФ, который является активатором ферментов тканевого дыхания. При мышечной работе происходит накопление A ДФ. Избыток A ДФ ускоряет тканевое дыхание, и оно может достигнуть максимальной интенсивности.

Другим активатором ресинтеза АТФ является углекислый газ. Избыток этого газа в крови активирует дыхательный центр головного мозга, что в итоге приводит к повышению скорости кровообращения и улучшению снабжения мышцы кислородом.

Максимальная мощность аэробного пути составляет 350-450 кал/мин-кг. По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание облает более низкими показателями, что ограничено скоростью доставки кислорода в мышцы. Поэтому за счет аэробной пути ресинтеза АТФ могут осуществляться только физические нагрузки умеренной мощности.

Время развертывания составляет 3 – 4 минуты, но у хорошо тренированных спортсменов может составлять 1 мин. Это связано с тем, что на доставку кислорода в митохондрии требуется перестройка практически всех систем организма.

Время работы с максимальной мощностью составляет десятки минут. Это дает возможность использовать данный путь при длительной работе мышц.

По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный путь имеет ряд преимуществ.

1. Экономичность: из одной молекулы гликогена образуется 39 молекул АТФ, при анаэробном гликолизе только 3 молекулы.

2. Универсальность в качестве начальных субстратов здесь выступают разнообразные вещества: углеводы, жирные кислоты, кетоновые тела, аминокислоты.

3. Очень большая продолжительность работы. В покое скорость аэробного ресинтеза АТФ может быть небольшой, но при физических нагрузках она может стать максимальной.

Однако есть и недостатки.

1. Обязательное потребление кислорода, что ограничено скоростью доставки кислорода в мышцы и скоростью проникновения кислорода через мембрану митохондрий.

2. Большое время развертывания.

3. Небольшую по максимальной величине мощность.

Поэтому мышечная деятельность, свойственная большинству видов спорта, не может быть полностью получена этим путем ресинтеза АТФ.

В спортивной практике для оценки аэробного ресинтеза используются следующие показатели: максимальное потребление кислорода (МПК), порог аэробного обмена (ПАО), порог анаэробного обмена (ПАНО) и кислородный приход.

МПК – это максимально возможная скорость потребления кислорода организмом при выполнение физической работы. Чем выше МПК, тем выше скорость тканевого дыхания. Чем тренированнее человек, тем выше МПК. МПК рассчитывают обычно на 1кг массы тела. У людей, не занимающихся спортом МПК 50 мл/мин-кг, а у тренированных людей он достигает 90 мл/мин-кг.

В спортивной практике МПК также используется для характеристики относительной мощности аэробной работы, которая выражается в процентах от МПК. Например, относительная мощность работы, выполняемая с потреблением кислорода 3 л/мин спортсменом, имеющим МПК 6 л/мин, будет составлять 50% от уровня МПК.

ПАО – это наибольшая относительная мощность работы, измеряемая по потреблению кислорода в процентах по отношению к МПК. Большие величины ПАО говорят о лучшем развитии аэробного ресинтеза.

ПАНО – это минимальная относительная мощность работы, также измеренная по потреблению кислорода в процентах по отношению к МПК. Высокое ПАНО говорит о том, что аэробный ресинтез выше в единицу времени, поэтому гликолиз включается при гораздо больших нагрузках.

Кислородный приход – это количество кислорода (сверх дорабочего уровня), использованное во время выполнения данной нагрузки для обеспечения аэробного ресинтеза АТФ. Кислородный приход характеризует вклад тканевого дыхания в энергообеспечение всей проделанной работы. Кислородный приход часто используют для оценки всей проделанной аэробной работы.

Под влиянием систематических тренировок в мышечных клетках возрастает количество митохондрий, совершенствуется кислородно-транспортная функция организма, возрастет количество миоглобина в мышцах и гемоглобина в крови.

3. Анаэробные пути ресинтеза АТФ.

Анаэробные пути ресинтеза АТФ – это дополнительные пути. Таких путей два креатинфосфатный путь и лактатный.

Креатинфосфатный путь связан с веществом креатинфосфатом . Креатинфосфат состоит из вещества креатина, которое связывается с фосфатной группой макроэргической связью. Креатинфосфата в мышечных клетках содержится в покое 15 – 20 ммоль/кг.

Креатинфосфат обладает большим запасом энергии и высоким сродством с АДФ. Поэтому он легко вступает во взаимодействие с молекулами АДФ, появляющимися в мышечных клетках при физической работе в результате реакции гидролиза АТФ. В ходе этой реакции остаток фосфорной кислоты с запасом энергии переносится с креатинфосфата на молекулу АДФ с образованием креатина и АТФ.

Креатинфосфат + АДФ → креатин + АТФ.

Эта реакция катализируется ферментом креатинкиназой . Данный путь ресинтеза АТФ иногда называют креатикиназным.

Креатинкиназная реакция обратима, но смещена в сторону образования АТФ. Поэтому она начинает осуществляться, как только в мышцах появляются первые молекулы АДФ.

Креатинфосфат – вещество непрочное. Образование из него креатина происходит без участия ферментов. Не используемый организмом креатин, выводится из организма с мочой. У мужчин выделение креатинина с мочой колеблется в пределах 18-32 мг/сутки . кг массы тела, а у женщин – 10-25 мг/сутки . кг (это иесть криатининовый коэффициент). Синтез креатинфосфата происходит во время отдыха из избытка АТФ. При мышечной работе умеренной мощности запасы креатинфосфата могут частично восстанавливаться. Запасы АТФ и креатинфосфата в мышцах называют также фосфагены.

Максимальная мощность этого пути составляет 900 -1100 кал/ мин-кг, что в три раза выше соответствующего показателя аэробного пути.

Время развертывания всего 1 – 2 сек.

Время работы с максимальной скоростью всего лишь 8 – 10 сек.

Главным преимуществом креатинфосфатного пути образования АТФ являются

  • малое время развертывания (1-2 сек);
  • высокая мощность.

Эта реакция является главным источником энергии для упражнений максимальной мощности: бег на короткие дистанции, прыжки метания, подъем штанги. Эта реакция может неоднократно включаться во время выполнения физических упражнений, что делает возможным быстрое повышение мощности выполняемой работы.

Биохимическая оценка состояния этого пути ресинтеза АТФ обычно проводится двумя показателями: креатиновому коэффициенту и алактатному долгу.

Креатиновый коэффициент – это выделение креатина в сутки. Этот показатель характеризует запасы креатинфосфата в организме.

Алактатный кислородный долг – это повышение потребления кислорода в ближайшие 4 – 5 мин, после выполнения кратковременного упражнения максимальной мощности. Этот избыток кислорода требуется для обеспечения высокой скорости тканевого дыхания сразу после окончания нагрузки для создания в мышечных клетках повышенной концентрации АТФ. У высококвалифицированных спортсменов значение алактатного долга после выполнения нагрузок максимальной мощности составляет 8 – 10 литров.

Гликолитический путь ресинтеза АТФ , так же как креатинфосфатный является анаэробным путем. Источником энергии, необходимой для ресинтеза АТФ в данном случае является мышечный гликоген. При анаэробном распаде гликогена от его молекулы под действием фермента фосфорилазы поочередно отщепляются концевые остатки глюкозы в форме глюкозо-1-фосфата. Далее молекулы глюезо-1-фосфата после ряда последовательных реакций превращаются в молочную кислоту. Этот процесс называется гликолиз. В результате гликолиза образуются промежуточные продукты, содержащие фосфатные группы, соединенные макроэргическими связями. Эта связь легко переносится на АДФ с образованием АТФ. В покое реакции гликолиза протекают медленно, но при мышечной работе его скорость может возрасти в 2000 раз, причем уже в предстартовом состоянии.

Максимальная мощность – 750 – 850 кал/мин-кг, что в два раза выше, чем при тканевом дыхании. Такая высокая мощность объясняется содержанием в клетках большого запаса гликогена и наличием механизма активизации ключевых ферментов.

Время развертывания 20-30 секунд .

Время работы с максимальной мощностью – 2 -3 минуты.

Гликолитический способ образования АТФ имеет ряд преимуществ перед аэробным путем:

  • он быстрее выходит на максимальную мощность,
  • имеет более высокую величину максимальной мощности,
  • не требует участия митохондрий и кислорода.

Однако у этого пути есть и свои недостатки :

  • процесс малоэкономичен,
  • накопление молочной кислоты в мышцах существенно нарушает их нормальное функционирование и способствует утомлению мышцы.

Общий итог гликолиза может быть представлен в виде следующих уравнений:

С 6 Н 12 О 6 + АДФ + 2 Н 3 РО 4 С 3 Н 6 О 3 + 2 АТФ + 2 Н 2 О;

Глюкоза Молочная

Кислота

[ C 6 Н 10 О 5 ] n + 3 АДФ + 3 Н 3 РО 4 С 3 Н 6 О 3 + [ C 6 Н 10 О 5 ] n _ 1 + 3 АТФ + 2 Н 2 О

Гликоген Молочная

Кислота

Схема анаэробного и аэробного гликолиза

Для оценки гликолиза используют две биохимические методики – измерение концентрации лактата в крови, измерение водородного показателя крови и определение щелочного резерва крови.

Определяют также и содержание лактата в моче. Это дает информацию о суммарном вкладе гликолиза в обеспечение энергией упражнений, выполненных за время тренировки.

Еще одним важным показателем является лактатный кислородный долг. Лактатный кислородный долг – это повышенное потребление кислорода в ближайшие 1 – 1,5 часа после окончания мышечной работы. Этот избыток кислорода необходим для устранения молочной кислоты, образовавшейся при выполнении мышечной работы. У хорошо тренированных спортсменов кислородный долг составляет 20 – 22 л. По величине лактаного долга судят о возможностях данного спортсмена при нагрузках субмаксимальной мощности.

4. Соотношение между различными путями ресинтеза АТФ при мышечной работе. Зоны относительной мощности мышечной работы.

При любой мышечной работе функционируют все три пути ресинтеза АТФ, но включаются они последовательно. В первые секунды работы ресинтез АТФ идет за счет креатинфосфатной реакции, затем включается гликолиз и, наконец, по мере продолжения работы на смену гликолизу приходит тканевое дыхание.

Конкретный вклад каждого из механизмов образования АТФ в энергетическое обеспечение мышечных движений зависит от интенсивности и продолжительности физических нагрузок.

При кратковременной, но очень интенсивной работе (например, беге на 100 м) главным источником АТФ является креатинкиназная реакция. При более продолжительной интенсивной работе (например на средние дистанции) большая часть АТФ образуется за счет гликолиза. При выполнении упражнений большой продолжительности, но умеренной мощности энергообеспечение мышц осуществляется в основном за счет аэробного окисления.

В настоящее время приняты различные классификации мощности мышечной работы. В спортивной биохимии чаще всего используется классификация базирующаяся на том, что мощность обусловлена соотношением между тремя основными путями ресинтеза АТФ. Согласно этой классификации выделяют четыре зоны относительной мощности мышечной работы: максимальной, субмаксимальной, большой и умеренной.

Максимальная мощность может развиваться при работе продолжительностью 15 – 20 сек. Основной источник АТФ при этой работе – креатинфосфат. Только в самом конце креатинкиназная реакция заменяется гликолизом. Примером физических упражнений, выполняемых в зоне максимальной мощности, является бег на короткие дистанции, прыжки в длину и высоту, некоторые гимнастические упражнения, подъем штанги и некоторые другие. Максимальную мощность при этих упражнениях обозначают как максимальную анаэробную мощность .

Работа в зоне субмаксимальной аэробной мощности имеет продолжительность до 5 минут. Ведущий механизм ресинтеза АТФ – гликолиз. Вначале, пока реакции гликолиза не достигли максимальной скорости, образование АТФ идет за счет креатинфосфата, а в конце в процесс включается тканевое дыхание. Работа в этой зоне характеризуется высоким кислородным долгом – 20-22 л. Примером физических нагрузок в этой зоне мощности является бег на средние дистанции, плавание на средние дистанции, велосипедные гонки на треке, спринтерские конькобежные дистанции и др. Такие нагрузки называют лактатными.

Работа в зоне большой мощности имеет предельную продолжительность до 30 мин. Для работы в этой зоне характерен одинаковый вклад гликолиза и тканевого дыхания. Креатинфосфатный путь участвует только в самом начале работы.. Примером упражнений в этой зоне являются бег на 5000 м, бег на коньках на длинные дистанции, лыжные гонки, плавание на средние дистанции и др. Здесь различают нагрузки либо аэробно-анаэробные, либо анаэробно-аэробные.

Работа в умеренной зоне продолжительностью свыше 30 минут происходит преимущественно аэробным путем. Сюда относят марафонский бег, легкоатлетический кросс, шоссейные велогонки, спортивная ходьба, лыжные гонки на длинные дистанции, турпоходы и др.

В ациклических и ситуационных видах спорта (единоборства, гимнастические упражнения, спортивные игры) мощность выполняемой работы многократно меняется. Например, у футболистов бег с умеренной скоростью (зона большой мощности) чередуется с бегом на короткие дистанции со спринтерской скоростью (зона максимальной или субмаксимальной мощности). В то же время у футболистов бывают такие отрезки игры, когда мощность работы снижается до умеренной.

При подготовке спортсменов необходимо применять тренировочные нагрузки, развивающие путь ресинтеза АТФ, являющийся ведущим в энергообеспечении работы в зоне относительной мощности характерной для данного вида спорта.

Тема: БИОХИМИЧЕСКМЕ СДВИГИ ПРИ МЫШЕЧНОЙ РАБОТЕ.

1. Основные механизмы нервно-гуморальной регуляции мышечной деятельности.

Любая физическая работа сопровождается изменениями скорости метаболических процессов. Необходимая перестройка метаболизма во время мышечной деятельности происходит под воздействием нервно-гуморальной регуляции.

Можно выделить следующие механизмы нервно-гуморальной регуляции мышечной деятельности:

  1. При мышечной работе повышается тонус симпатического отдела вегетативной нервной системы, который отвечает за работу внутренних органов и мышц.

В легких под влиянием симпатических импульсов повышается частота дыхания и происходит расширение бронхов. В результате увеличивается легочная вентиляция, что приводит к улучшению обеспечения организма кислородом.

Под влиянием симпатической нервной системы также повышается частота сердечных сокращений, следствием чего является увеличение скорости кровотока и улучшение снабжения органов, в первую очередь мышц, кислородом и питательными веществами.

Симпатическая система усиливает потоотделение, улучшая тем самым терморегуляцию.

Она оказывает замедляющее влияние на работу почек, кишечника. Под влиянием симпатической нервной системы происходит мобилизация жира.

  1. Не менее важную роль в перестройке организма во время мышечной работы выполняют гормоны. Наибольшее значение в биохимическую перестройку при этом вносят гормоны надпочечников.

Мозговой слой надпочечников вырабатывает катехоламины – адреналин и норадреналин. Выделение гормонов мозгового слоя в кровь происходит при различных эмоциях и стрессах. Биологическая роль этих гормонов – создание оптимальных условий для выполнения мышечной работы большой мощности и продолжительности путем воздействия на физиологические функции и метаболизм.

Попадая в кровь, катехоламины дублируют действия симпатических импульсов. Они вызывают повышение частоты дыхания, расширение бронхов. Под действием адреналина повышается частота сердечных сокращений и их сила. Под действием адреналина в организме происходит перераспределение крови в сосудистом русле.

В печени эти гормоны вызывают ускоренный распад гликогена. В жировой ткани катехоламины активизирует липазы, ускоряя тем самым распад жира. В мышцах они активизируют распад гликогена.

Гормоны коркового слоя также активно участвуют в активизации мышечной работы. Их действие заключается в том, что они подавляют действие фермента гексокиназы, чем способствуют накоплению глюкозы в крови. Поскольку эти гормоны не действуют на нервные клетки – это дает возможность питать нервные клетки, поскольку глюкоза для них практический единственный источник энергии. Гормоны – глюкокортикоиды – тормозят анаболические процессы и в первую очередь биосинтез белков. Это дает возможность использовать высвободившиеся молекулы АТФ для работы мышц. Кроме того они стимулируют синтез глюкозы из неуглеводных субстратов.

2. Биохимические изменения в скелетных мышцах.

При выполнении физической работы в мышцах происходит глубокие изменения, обусловленные прежде всего интенсивностью процессов ресинтеза АТФ.

Использование креатинфосфата в качестве источника энергии приводит к снижению его концентрации в мышечных клетках и накоплению в них креатина.

Практически при любой работе для получения АТФ используется мышечный гликоген. Поэтому его концентрация в мышцах снижается независимо от характера работы. При выполнении интенсивных нагрузок в мышцах наблюдается быстрое уменьшение запасов гликогена и одновременное образование и накопление молочной кислоты. За счет накопления молочной кислоты повышается кислотность внутри мышечных клеток. Увеличение содержания лактата в мышечных клетках вызывает также повышением в них осмотического давления. Повышение осмотического давления приводит к тому, что в мышечную клетку из капилляров и межклеточного пространства поступает вода, и мышцы набухают или, как говорят спортсмены, «забиваются».

Продолжительная мышечная работа небольшой мощности вызывает плавное снижение концентрации гликогена в мышцах. В данном случае распад происходит аэробно, с потреблением кислорода. Конечные продукты такого распада – углекислый газ и вода – удаляются из мышечных клеток в кровь. Поэтому после выполнения работы умеренной мощности в мышцах обнаруживается уменьшение содержания гликогена без накопления лактата.

Еще одно важное изменение, возникающее в работающих мышцах – повышение скорости распада белков. Особенно ускоряется распад белков при выполнении силовых упражнений, причем, это затрагивает в первую очередь сократительные белки миофибрилл. Вследствие распада белков в мышечных клетках повышается содержание свободных аминокислот и продуктов их распада – кетокислот и аммиака.

Другими характерным изменением, вызываемым мышечной деятельностью, является снижение активности ферментов мышечных клеток. Одной из причин уменьшения ферментативной активности может быть повышенная кислотность, вызванная появлением в мышцах молочной кислоты.

И наконец, мышечная деятельность может привести к повреждениям внутриклеточных структур – миофибрилл, митохондрий и других биомембран. Так нарушение мембран саркоплазматической цепи ведет к нарушению проведения нервного импульса к цистернам, содержащим ионы кальция. Нарушения целостности сарколеммы сопровождается потерей мышцами многих важных веществ, которые уходят из поврежденной клетки в лимфу и кровь. Нарушается и работа ферментов, встроенных в мембраны. Нарушается работа кальциевого насоса и ферментов тканевого дыхания, расположенных на внутренней поверхности мембран митохондрий.

3. Биохимические сдвиги в головном мозге и миокарде.

Головной мозг. Во время мышечной деятельности в двигательных нейронах коры головного мозга происходит формирование и последующая передача двигательного нервного импульса. Оба эти процесса (формирование и передача нервного импульса) осуществляются с потреблением энергии в виде молекул АТФ. Образование АТФ в нервных клетках происходит аэробно. Поэтому при мышечной работе увеличивается потребление мозгом кислорода из протекающей крови. Другой особенностью энергетического обмена в нейронах является то, что основным субстратом окисления является глюкоза, поступающая с током крови.

В связи с такой спецификой энергоснабжения нервных клеток любое нарушение снабжения мозга кислородом или глюкозой неминуемо ведет к снижению его функциональной активности, что у спортсменов может проявиться в форме головокружения или обморочного состояния.

Миокард. Во время мышечной деятельности происходит усиление и учащение сердечных сокращений, что требует большого количества энергии по сравнению с состоянием покоя. Однако энергоснабжение сердечной мышцы осуществляется главным образом за счет аэробного ресинтеза АТФ. Лишь при ЧСС более 200 уд/мин, включается анаэробный синтез АТФ.

Большие возможности аэробного энергообеспечения в миокарде обусловлены особенностью строения этой мышцы. В отличие от скелетных мышц в миокарде имеется более развитая и густая сеть капилляров, что позволяет извлекать из крови больше кислорода и субстратов окисления. Кроме того, в клетках сердечной мышцы имеется больше митохондрий, содержащих ферменты тканевого дыхания. В качестве источников энергии клетки сердечной мышцы используют и глюкозу, и жирные кислоты, и кетоновые тела, и глицерин. Гликоген миокард сохраняет на «черный день», когда истощаться другие источники энергии.

Во время интенсивной работы сопровождающейся увеличением концентрации лактата в крови, миокард извлекает из крови лактат и окисляет его до углекислого газа и воды.

При окислении одной молекулы молочной кислоты синтезируется до 18 молекул АТФ. Способность миокарда окислять лактат имеет большое биологическое значение. Это дает возможность организму дольше поддерживать в крови необходимую концентрацию глюкозы, что очень существенно для биоэнергетики нервных клеток, для которых глюкоза является почти единственным субстратом окисления. Окисление лактата в миокарде также способствует нормализации кислотно-щелочного баланса, так как при этом в крови снижается концентрация этой кислоты.

4. Биохимические сдвиги в печени.

При мышечной деятельности активируются функции печени, направленные преимущественно на улучшение обеспечения работающих мышц, внемышечными источниками энергии, переносимыми кровью. Ниже описаны наиболее важные биохимические процессы, протекающие в печени во время работы.

1. Под воздействием адреналина повышается скорость распада гликогена с образованием свободной глюкозы. Образовавшаяся глюкоза выходит из клеток печени в кровь, что приводит к возрастанию её концентрации в крови. При этом снижается содержание гликогена. Наиболее высокая скорость распада гликогена наблюдается в печени в начале работы, когда запасы гликогена ещё велики.

2. Во время выполнения физического упражнения клетки печени активно извлекают из крови жир, жирные кислоты, содержание которых в крови возрастает вследствие мобилизации жира из жировых депо. Поступающий в печеночные клетки жир сразу подвергается гидролизу и превращается в глицерин и жирные кислоты. Далее жирные кислоты путем β-окисления расщепляются до ацетилкофермента А, из которого затем образуются кетоновые тела. Кетоновые тела являются важным источником энергии. С током крови они переносятся из печени в работающие органы – миокард и скелетные мышцы. В этих органах кетоновые тела вновь превращаются в ацетилкофермент А, который сразу же аэробно окисляется в цикле трикарбоновых кислот до углекислого газа и воды с выделением большого количества энергии.

3. Еще один биохимический процесс, протекающий в печени во время мышечной работы – это образование глюкозы из глицерина, аминокислот, лактата. Этот процесс идет с затратами энергии молекул АТФ. Обычно такой синтез глюкозы протекает при длительной работе, ведущей к снижению концентрации глюкозы в кровяном русле. Благодаря этому процессу организму удается поддерживать в крови необходимый уровень глюкозы.

4. При физической работе усиливается распад мышечных белков, приводящий к образованию свободных аминокислот, которые далее дезаминируются, выделяя аммиак. Аммиак является клеточным ядом, его обезвреживание происходит в печени, где он превращается в мочевину. Синтез мочевины требует значительного количества энергии. При истощающих нагрузках, не соответствующему функциональному состоянию организма, печень может не справляться с обезвреживанием аммиака, в этом случае возникает интоксикация организма этим ядом, ведущая к снижению работоспособности.

5. Биохимические сдвиги в крови.

Изменения химического состава крови является отражением тех биохимических сдвигов, которые возникают при мышечной деятельности в различных внутренних органах, скелетных мышцах и миокарде.

Биохимические сдвиги, возникающие в крови, в значительной мере зависят от характера работы, поэтому их анализ следует проводить с учетом мощности и продолжительности физических нагрузок.

При выполнении мышечной работы в крови чаще всего обнаруживаются следующие изменения.

1. Изменения концентрации белков в плазме крови. Причин этого две. Во-первых, усиленное потоотделение приводит к уменьшению содержания воды в плазме крови и, следовательно, к ее сгущению. Это вызывает возрастание концентрации веществ, содержащихся в плазме. Во-вторых, вследствие повреждения клеточных мембран наблюдается выход внутриклеточных белков в плазму крови. В этом случае часть белков кровяного русла переходит в мочу, а другая часть используется в качестве источников энергии.

2. Изменение концентрации глюкозы в крови во время работы проходит ряд фаз. В самом начале работы уровень глюкозы возрастает. Глюкоза выходит из печени, где происходит ее образование из гликогена. Кроме того мышцы, имеющие запасы гликогена, на этой стадии в глюкозе из крови остро не нуждаются. Но затем наступает стадия когда гликоген в печени и мышцах заканчивается. Тогда наступает следующая фаза, когда для извлечения энергии используется глюкоза крови. Ну а в конце работы наступает фаза истощения и, как следствие, гипогликемия – снижение концентрации глюкозы в крови.

3. Повышение концентрации в крови лактата наблюдается практически при любой спортивной деятельности, но степень накопления лактата в значительной степени зависит от характера выполняемой работы и тренированности спортсмена. Наибольший подъем уровня молочной кислоты в крови отмечается при выполнении физических нагрузок в зоне субмаксимальной мощности. Так как в этом случае главным источником энергии для работающих мышц является анаэробный гликолиз, приводящий к образованию и накоплению лактата.

Следует помнить, что накопление лактата происходит не сразу, а через несколько минут после окончания работы. Поэтому и измерение уровня лактата нужно проводить через 5 – 7 минут после окончания работы. Если уровень лактата в покое не превышает 1 – 2 ммоль/л, то у высоко-тренированных спортсменов после тренировки он может достигать 20 – 30 ммоль/л.

4. Водородный показатель (рН). При выполнении упражнений субмаксимальной мощности уровень рН может довольно значительно снижаться (на 0,5 ед.)

5. Физические упражнения сопровождаются повышением концентрации свободных жирных кислот и кетоновых тел в крови. Это связано с мобилизацией жира в печени и выходом продуктов этого процесса в кровь.

6. Мочевина. При кратковременной работе концентрация мочевины в крови меняется незначительно, при длительной работе уровень мочевины возрастает в несколько раз. Это связано с усилением метаболизма белков при физических нагрузках.

6. Биохимические сдвиги в моче.

Физические упражнения влияют на физико-химические свойства мочи, сдвиги в которых объясняются существенными сдвигами в химическом составе мочи.

В моче появляются вещества, которые обычно в ней отсутствуют. Эти вещества называют патологическими компонентами. У спортсменов наблюдаются после напряженной работы, следующие патологические компоненты.

1. Белок. Обычно в моче не более 100 мг белка. После тренировки наблюдается значительное выделение мочой белка. Это явление получило название протеинурия. Чем тяжелее нагрузки, тем выше содержание белка . Причиной этого явления, возможно, является повреждение почечных мембран. Однако снижение нагрузок полностью восстанавливает нормальный состав мочи.

2. Глюкоза. В покое глюкоза в моче отсутствует. После завершения тренировки в моче нередко обнаруживается глюкоза. Это обусловлено двумя основными причинами. Первая, избыточное содержание глюкозы в крови при физической работе. Во-вторых нарушение почечных мембран вызывает нарушение процесса обратного всасывания.

3. Кетоновые тела. До работы кетоновые тела в моче не обнаруживаются. После нагрузок с мочой могут выделяться в больших количествах кетоновые тела. Это явление называется кетонурия. Она связана с повышением концентрации кетоновых тел в крови и наращением реабсорбции их почками.

4. Лактат. Появление молочной кислоты в моче обычно наблюдается после тренировок, включающих упражнения субмаксимальной мощности. По выделению лактата с мочой можно судить об общем вкладе гликолиза в энергетическое обеспечение всей работы, выполненной спортсменом за тренировку.

Наряду с влиянием на химический состав мочи физические нагрузки меняют и физико-химические свойства мочи.

Плотность. Объем мочи после тренировок, как правило, меньше, так как большая часть воды уходит с потом. Это сказывается на плотности мочи, которая возрастает. Увеличение плотности мочи связано также с появлением в ней веществ, которые обычно в моче отсутствуют.

Кислотность. Кетоновые тела и молочная кислота, выделяемые с мочой, меняют её кислотность. Обычно рН мочи 5 – 6 ед. После работы он может снизиться до 4 – 4,5 ед.

Чем интенсивнее физические нагрузки – тем значительнее изменения, наблюдаемые в составе мочи и крови.

Другие похожие работы, которые могут вас заинтересовать.вшм>

378. БИОХИМИЯ МЫШЦ И МЫШЕЧНОГО СОКРАЩЕНИЯ 712.31 KB
БИОХИМИЯ МЫШЦ И МЫШЕЧНОГО СОКРАЩЕНИЯ. Механизм мышечного сокращения и расслабления. Важнейшей особенностью функционирования мышц является то что в процессе мышечного сокращения происходит непосредственное превращение химической энергии АТФ в механическую энергию сокращения мышц. Биохимически они различаются механизмами энергетического обеспечения мышечного сокращения.
10034. Пути сокращения производственных запасов 106.84 KB
На сегодняшний момент времени, главная задача предприятий - значительное повышение качества производственного процесса, его эффективности, отдачи вложений, в том числе и производственных, которые являются базой всего производства.
15050. Пути сокращения затрат предприятия ООО «Томак-2» 138.77 KB
Проблемы снижения затрат на предприятии, поиска путей их решения являются сложными и интересными вопросами современной экономики предприятия. Проблема снижения затрат очень актуальна в современных экономических условиях, так как ее решение позволяет каждому конкретному предприятию выжить в условиях жесткой рыночной конкуренции, построить крепкое и сильное предприятие, которое будет иметь хороший экономический потенциал.
5067. Гладкие мышцы. Строение, функции, механизм сокращения 134.79 KB
Мышцы или мускулы от лат. Мышцы позволяют двигать частями тела и выражать в действиях мысли и чувства. Гладкие мышцы являются составной частью некоторых внутренних органов и участвуют в обеспечении функции выполняемые этими органами.
17984. Перспективы сокращения и социально-экономическое значение государственного долга Российской Федерации 395.55 KB
Причины возникновения государственного долга Российской Федерации. Анализ и современное состояние государственного внутреннего долга Российской Федерации. Анализ и современное состояние государственного внешнего долга Российской Федерации. Перспективы сокращения и социально-экономическое значение государственного долга Российской Федерации...
11490. Пути сокращения длительности товарооборота предприятий розничной торговли (на материалах ООО «Диана», г. Курган) 176.54 KB
Размер товарных запасов является синтетическим показателем, позволяющим в известной мере оценивать результаты хозяйственной деятельности, как отдельных торговых предприятий, организаций, так и отрасли в целом, а также эффективность использования материальных и трудовых ресурсов.
12159. О стратегической стабильности в прошлом и настоящем и ее значении для выработки подходов к ограничению и сокращения вооружений 17.33 KB
Проведен анализ угроз стратегической стабильности сформировавшихся за последние годы прежде всего за счет распространения ядерного оружия. Показано что стратегическая стабильность в большей степени чем прежде зависит от нарушения региональной стабильности. Проблема обеспечения ядерной стабильности остается актуальной и для диадных отношений РоссияСША.
7533. Программное обеспечение 71.79 KB
Антивирусы Как ни странно но до сих пор нет точного определения что же такое вирус. либо присущи другим программам которые никоим образом вирусами не являются либо существуют вирусы которые не содержат указанных выше отличительных черт за исключением возможности распространения. макровирусы заражают файлы документов Word и Excel. Существует большое количество сочетаний например файловозагрузочные вирусы заражающие как файлы так и загрузочные сектора дисков.
9261. Качество и его обеспечение 10.04 KB
Различные определения понятия качества таким образом можно разделить на два основных вида: трактующие понятия качества как пригодность к употреблению или как соответствие техническим и прочим требованиям. Ни одно из многих определений качества не является универсальным. Возникает вопрос: что же такое система управления качеством В большинстве зарубежных стран под системой управления качеством понимается система интегрирующая деятельность различных производственных групп и ориентированная на...
7780. Обеспечение информационной безопасности 50.64 KB
При рассмотрении жизни общества на исторически длительных интервалах времени (сотни и более лет) с позиций Общей теории управления можно выделить шесть уровней обобщенных средств управления обществом. Уровни средств управления связаны непосредственно с воздействием на общество, в том числе и при помощи войн

Тема: ЭНЕРГЕТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ МЫШЕЧНОЙ ДЕЯТЕЛЬНОСТИ

2. Аэробный путь ресинтеза АТФ.

3. Анаэробные пути ресинтеза АТФ.

4. Соотношения между различными путями ресинтеза АТФ при мышечной работе. Зоны относительной мощности мышечной работы.

Тема : БИОХИМИЧЕСКИЕ ИЗМЕНЕНИЯ В ОР­ГАНИЗМЕ ПРИ РАБОТЕ РАЗЛИЧНОГО ХА­ РАКТЕРА

1. Основные механизмы нервно-гуморальной регуляции мышечной деятельности.

2. Биохимические изменения в скелетных мышцах.

3. Биохимические сдвиги в головном мозге и миокарде.

4. Биохимические изменения в печени.

5. Биохимические сдвиги в крови.

6. Биохимические сдвиги в моче.

1. Количественные критерии путей ресинтеза АТФ.

Сокращение и расслабление мышцы нуждаются в энергии, которая образуется при гидролизе молекул АТФ.

Однако запасы АТФ в мышце незначительны, их достаточно для работы мышцы в течении 2 секунд. Образование АТФ в мышцах называется ресинтезом АТФ.

Таким образом, в мышцах идет два параллельных процесса – гидролиз АТФ и ресинтез АТФ.

Ресинтез АТФ в отличие от гидролиза может протекать разными путями, а всего, в зависимости от источника энергии их выделяют три: аэробный (основной), креатинфосфатный и лактатный.

Для количественной характеристики различных путей ресинтеза АТФ обычно используют несколько критериев.

1. Максимальная мощность или максимальная скорость – это наибольшее количество АТФ, которое может образоваться в единицу времени за счет данного пути ресинтеза. Измеряется максимальная мощность в калориях или джоулях, исходя из того что один ммоль АТФ соответствует физиологическим условиям примерно 12 кал или 50 Дж. Поэтому данный критерий имеет размерность кал/мин-кг мышечной ткани или Дж/мин-кг мышечной ткани.

2. Время развертывания – это минимальное время, необходимое для выхода ресинтеза АТФ на свою наибольшую скорость, то есть для достижения максимальной мощности. Этот критерий измеряется в единицах времени.

3. Время сохранения или поддержания максимальной мощности – это наибольшее время функционирования данного пути ресинтеза АТФ с максимальной мощностью.

4. Метаболическая ёмкость – это общее количество АТФ, которое может образоваться во время мышечной работы за счет данного пути ресинтеза АТФ.

В зависимости от потребления кислорода пути ресинтеза делятся на аэробные и анаэробные.

2. Аэробный путь ресинтеза атф

Аэробный путь ресинтеза АТФиначе называется тканевым дыханием – это основной способ образования АТФ, протекающий в митохондриях мышечных клеток. В ходе тканевого дыхания от окисляемого вещества отнимаются два атома водорода и по дыхательной цепи передаются на молекулярный кислород, доставляемый в мышцы кровью, в результате чего возникает вода. За счет энергии, выделяющейся при образовании воды, происходит синтез молекул АТФ из АДФ и фосфорной кислоты. Обычно на каждую образовавшуюся молекулу воды приходится синтез трех молекул АТФ.

Чаще всего водород отнимается от промежуточных продуктов цикла трикарбоновых кислот (ЦТК). ЦТК – это завершающий этап катаболизма в ходе которого происходит окисление ацетилкофермента А до углекислого газа и воды. В ходе этого процесса от перечисленных выше кислот отнимается четыре пары атомов водорода и поэтому образуется 12 молекул АТФ при окислении одной молекулы ацетилкофермента А.

В свою очередь ацетилкофермент А может образовываться из углеводов, жиров аминокислот, то есть через это соединение в ЦТК вовлекаются углеводы, жиры и аминокислоты.

Скорость аэробного обмена АТФ контролируется содержанием в мышечных клетках AДФ, который является активатором ферментов тканевого дыхания. При мышечной работе происходит накопление AДФ. Избыток AДФ ускоряет тканевое дыхание, и оно может достигнуть максимальной интенсивности.

Другим активатором ресинтеза АТФ является углекислый газ. Избыток этого газа в крови активирует дыхательный центр головного мозга, что в итоге приводит к повышению скорости кровообращения и улучшению снабжения мышцы кислородом.

Максимальная мощность аэробного пути составляет 350-450 кал/мин-кг. По сравнению с анаэробными путями ресинтеза АТФ тканевое дыхание облает более низкими показателями, что ограничено скоростью доставки кислорода в мышцы. Поэтому за счет аэробной пути ресинтеза АТФ могут осуществляться только физические нагрузки умеренной мощности.

Время развертывания составляет 3 – 4 минуты, но у хорошо тренированных спортсменов может составлять 1 мин. Это связано с тем, что на доставку кислорода в митохондрии требуется перестройка практически всех систем организма.

Время работы с максимальной мощностью составляет десятки минут. Это дает возможность использовать данный путь при длительной работе мышц.

По сравнению с другими идущими в мышечных клетках процессами ресинтеза АТФ аэробный путь имеет ряд преимуществ.

1. Экономичность: из одной молекулы гликогена образуется 39 молекул АТФ, при анаэробном гликолизе только 3 молекулы.

2. Универсальность в качестве начальных субстратов здесь выступают разнообразные вещества: углеводы, жирные кислоты, кетоновые тела, аминокислоты.

3. Очень большая продолжительность работы. В покое скорость аэробного ресинтеза АТФ может быть небольшой, но при физических нагрузках она может стать максимальной.

Однако есть и недостатки.

1. Обязательное потребление кислорода, что ограничено скоростью доставки кислорода в мышцы и скоростью проникновения кислорода через мембрану митохондрий.

2. Большое время развертывания.

3. Небольшую по максимальной величине мощность.

Поэтому мышечная деятельность, свойственная большинству видов спорта, не может быть полностью получена этим путем ресинтеза АТФ.

В спортивной практике для оценки аэробного ресинтеза используются следующие показатели: максимальное потребление кислорода (МПК), порог аэробного обмена (ПАО), порог анаэробного обмена (ПАНО) и кислородный приход.

МПК – это максимально возможная скорость потребления кислорода организмом при выполнение физической работы. Чем выше МПК, тем выше скорость тканевого дыхания. Чем тренированнее человек, тем выше МПК. МПК рассчитывают обычно на 1кг массы тела. У людей, не занимающихся спортом МПК 50 мл/мин-кг, а у тренированных людей он достигает 90 мл/мин-кг.

В спортивной практике МПК также используется для характеристики относительной мощности аэробной работы, которая выражается в процентах от МПК. Например, относительная мощность работы, выполняемая с потреблением кислорода 3 л/мин спортсменом, имеющим МПК 6 л/мин, будет составлять 50% от уровня МПК.

ПАО – это наибольшая относительная мощность работы, измеряемая по потреблению кислорода в процентах по отношению к МПК. Большие величины ПАО говорят о лучшем развитии аэробного ресинтеза.

ПАНО – это минимальная относительная мощность работы, также измеренная по потреблению кислорода в процентах по отношению к МПК. Высокое ПАНО говорит о том, что аэробный ресинтез выше в единицу времени, поэтому гликолиз включается при гораздо больших нагрузках.

Кислородный приход – это количество кислорода (сверх дорабочего уровня), использованное во время выполнения данной нагрузки для обеспечения аэробного ресинтеза АТФ. Кислородный приход характеризует вклад тканевого дыхания в энергообеспечение всей проделанной работы. Кислородный приход часто используют для оценки всей проделанной аэробной работы.

Под влиянием систематических тренировок в мышечных клетках возрастает количество митохондрий, совершенствуется кислородно-транспортная функция организма, возрастет количество миоглобина в мышцах и гемоглобина в крови.



 
Статьи по теме:
Постное медовое печенье рецепт
В пост тоже можно печь вкусное и ароматное печенье в домашних условиях без использования в рецептах сливочного масла и яиц.Постное овсяное печенье с бананомВ рецепте постных овсяных печенек используются овсяные хлопья и банан, а для аромата добавляется .И
Как освятить нательный крестик
18.10.2014 Нательный крестик – особый православный оберег, который должен защищать человека от напастей, невзгод и болезни, помогать их стойко и мужественно переносить. Тельник (второе название православного крестика) поможет избавиться от недоброжелате
Кукурузные палочки: как делают на производстве и в домашних условиях
При обилии разновидностей современной бытовой техники, призванной помогать хозяюшкам радовать семью и гостей вкусными лакомствами, создание кукурузных палочек – процесс технологически довольно сложный. Особенности уровня влажности и температурного баланса
Исследовательская работа
Человеческое общество развивается, меняются традиции, взгляды, обороты речи, сам язык, наконец. Как устаревшие уходят из обихода даже в армии словарные обороты «честь имею» и «отдать честь». Искажается даже изначальный смысл этих замечательных фраз.Что зн